LIMITING EMBEDDING THEOREMS FOR $W^{s,p}$ WHEN $s \uparrow 1$ AND APPLICATIONS

By

JEAN BOURGAIN, HAÏM BREZIS AND PETRU MIRONESCU

Dedicated to the memory of T. Wolff

1 Introduction

This is a follow-up of our paper [3], where we establish that

(1)
$$\lim_{s \uparrow 1} (1 - s) \int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^{d + sp}} dx dy \sim \|\nabla f\|_{L^p(\Omega)}^p,$$

for any $p \in [1, \infty)$, where Ω is a smooth bounded domain in \mathbb{R}^d , $d \ge 1$.

On the other hand, if 0 < s < 1, p > 1 and sp < d, the Sobolev inequality for fractional Sobolev spaces (see, e.g., [1], Theorem 7.57 or [6], Section 3.3) asserts that

(2)
$$||f||_{W^{a,p}(\Omega)}^{p} \ge C(s,p,d)||f-ff||_{L^{q}(\Omega)}^{p},$$

where

(3)
$$1/q = 1/p - s/d.$$

Here we use the standard semi-norm on $W^{s,p}$

(4)
$$||f||_{W^{s,p}(\Omega)}^p = \int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^{d+sp}} dx dy.$$

When s = 1, the analogue of (2) is the classical Sobolev inequality

(5)
$$\|\nabla f\|_{L^{p}(\Omega)}^{p} \ge C(p,d) \|f - \int f\|_{L^{p^{*}}(\Omega)}^{p},$$

where

$$1/p^* = 1/p - 1/d$$
 and $1 \le p < d$.

The behaviour of the best constant C(p, d) in (5) as $p \uparrow d$ is known (see, e.g., [5], Section 7.7 and also Remark 1 below); more precisely, one has

(6)
$$\|\nabla f\|_{L^{p}(\Omega)}^{p} \ge C(d)(d-p)^{p-1}\|f-\int f\|_{L^{p^{*}}(\Omega)}^{p}.$$

Putting together (1), (4) and (6) suggests that (2) holds with

(7)
$$C(s, p, d) = C(d)(d - sp)^{p-1}/(1 - s),$$

for all s < 1, s close to 1 and sp < d.

This is indeed our main result. For simplicity, we work with Ω = the unit cube Q in \mathbb{R}^d .

Theorem 1. Assume $d \ge 1, p \ge 1, 1/2 \le s < 1$ and sp < 1. Then

(8)
$$\int_{Q} \int_{Q} \frac{|f(x) - f(y)|^{p}}{|x - y|^{d + sp}} dx dy \ge C(d) \frac{(d - sp)^{p - 1}}{1 - s} ||f - \int f||_{L^{q}(Q)}^{p},$$

where q is given by (3) and C(d) depends only on d.

As can be seen from (8), there are two phenomena that govern the behaviour of the constant in (8). As $s \uparrow 1$, the constant gets bigger; while as $s \uparrow d/p$, the constant deteriorates. This explains why we consider several cases in the proof.

As an application of Theorem 1 with p=1 and $f=\chi_A$, the characteristic function of a measurable set $A\subset Q$, we easily obtain

Corollary 1. For all $0 < \varepsilon \le 1/2$,

$$|A|\,|^c A| \le \left(C(d)\varepsilon \int_A \int_{\epsilon_A} \frac{dxdy}{|x-y|^{d+1-\varepsilon}}\right)^{d/(d-1+\varepsilon)}.$$

Note that in the special case d = 1, (9) takes the simple form

(10)
$$|A||^{c}A| \leq \left(C^{*}\varepsilon \int_{A} \int_{c_{A}} \frac{dxdy}{|x-y|^{2-\varepsilon}}\right)^{1/\varepsilon}$$

for some absolute constant C^* . Estimate (10) is sharp, as can be easily seen when A is an interval.

The conclusion of Corollary 1 is related to a result stated in [3] (Remark 4). There is, however, an important difference. In [3], the set A was fixed (independent of ε); and the statement there provides a bound for |A| $|^cA|$ in terms of the limit, as $\varepsilon \to 0$, of the RHS in (9). The improved version—which requires a more delicate argument—is used in Section 7; we apply Corollary 1 (with d=1) to give a proof

of a result announced in [2] (Remark E.1). Namely, on $\Omega = (-1, +1)$, consider the function

$$arphi_{m{arepsilon}}(x) = egin{cases} 0 & ext{for } -1 < x < 0, \ 2\pi x/\delta & ext{for } 0 < x < \delta, \ 2\pi & ext{for } \delta < x < 1, \end{cases}$$

where $\delta = e^{-1/\varepsilon}, \varepsilon > 0$ small.

Set $u_{\varepsilon} = e^{i\varphi_{\varepsilon}}$. It is easy to check (by scaling) that

$$||u_{\varepsilon}||_{H^{1/2}} = ||u_{\varepsilon} - 1||_{H^{1/2}} \le C$$

as $\varepsilon \to 0$ and consequently $||u_{\varepsilon}||_{H^{(1-\varepsilon)/2}} \le C$ as $\varepsilon \to 0$. On the other hand, a straightforward computation shows that $||\varphi_{\varepsilon}||_{H^{(1-\varepsilon)/2}} \sim \varepsilon^{-1/2}$.

The result announced in [2] asserts that any lifting ψ_{ε} of u_{ε} blows up in $H^{(1-\varepsilon)/2}$ (at least) in the same rate as φ_{ε} :

Theorem 2. Let $\psi_{\varepsilon}: \Omega \to \mathbb{R}$ be any measurable function such that $u_{\varepsilon} = e^{i\psi_{\varepsilon}}$. Then

$$\|\psi_{\varepsilon}\|_{H^{(1-\varepsilon)/2}} \ge c\varepsilon^{-1/2}, \quad \varepsilon \in (0, 1/2),$$

for some absolute constant c > 0.

Remark 1. There are various versions of the Sobolev inequality (5). All these forms hold with equivalent constants:

Form 1.
$$\|\nabla f\|_{L^p(Q)} \ge A_1 \|f - \int_Q f\|_{L^q(Q)}, \ f \in W^{1,p}(Q).$$

Form 2. $\|\nabla f\|_{L^p(Q)} \ge A_2 \|f - \int_Q f\|_{L^q(Q)}$, for all Q-periodic functions $f \in W^{1,p}_{loc}(\mathbb{R}^d)$.

Form 3.
$$\|\nabla f\|_{L^p(\mathbb{R}^d)} \ge A_3 \|f\|_{L^q(\mathbb{R}^d)}, \ f \in C_0^{\infty}(\mathbb{R}^d).$$

Form 1 \Rightarrow Form 2. Obvious with $A_2 = A_1$.

Form $2 \Rightarrow$ Form 1. Any function $f \in W^{1,p}(Q)$ can be extended by reflections to a periodic function on a larger cube \widetilde{Q} , so that Form 2 implies Form 1 with $A_1 \geq CA_2$, and C depends only on d.

Form 1 \Rightarrow **Form 3.** By scale invariance, Form 1 holds with the same constant A_1 on the cube Q_R of side R. Fix a function $f \in C_0^{\infty}(\mathbb{R}^d)$ and let R > diam (Supp f). We have

$$\|\nabla f\|_{L^p(Q_R)} \ge A_1 \|f - \int_{Q_R} f\|_{L^q(Q_R)}.$$

As $R \to \infty$, we obtain Form 3 with $A_3 = A_1$.

Form 3 \Rightarrow Form 2. Given a smooth periodic function f on \mathbb{R}^d , let ρ be a smooth cut-off function with $\rho = 1$ on Q and $\rho = 0$ outside 2Q. Then

$$\|\nabla(\rho f)\|_{L^p(\mathbb{R}^d)} \ge A_3 \|\rho f\|_{L^q(\mathbb{R}^d)}$$

and thus

$$A_3||f||_{L^q(Q)} \le C(||\nabla f||_{L^p(Q)} + ||f||_{L^p(Q)}),$$

where C depends only on d. Replacing f by $(f - \int_Q f)$ and applying Poincaré's inequality (see, e.g., [5], Section 7.8) yields

$$|A_3||f - \int f||_{L^q(Q)} \le C||\nabla f||_{L^q(Q)}$$

The reader will check easily that the same considerations hold for the fractional Sobolev norms such as in (8). The proof of the last implication (Form $3 \Rightarrow$ Form 2) involves a Poincaré-type inequality. What we use here is the following

Fact. Let $1 \le p < \infty$, $1/2 \le s < 1$; then

$$(1-s)\int_{Q}\int_{Q}\frac{|f(x)-f(y)|^{p}}{|x-y|^{d+sp}}\geq c(d)||f-f_{Q}f||_{L^{p}(Q)}^{p}.$$

The proof of this fact is left to the reader. (It is an adaptation of the argument in the beginning of Section 5. In (3) of Section 5 one uses an obvious lower bound:

$$(3) \ge c \left(\sum_{r} \|f_r\|_{L^p} \right)^p \ge c \|f - \int f\|_{L^p}^p.)$$

For the convenience of the reader, we have divided the proof of Theorem 1 into several cases. The plan of the paper is the following.

- 1. Introduction.
- 2. Proof of Theorem 1 when p = 1 and d = 1.
- 3. Proof of Theorem 1 when p = 1 and $d \ge 2$.
- 4. Square function inequalities.
- 5. Proof of Theorem 1 when 1 .
- 6. Proof of Theorem 1 when $p \ge 2$.
- 7. Proof of Theorem 2.

Appendix: Proof of the square function inequality.

2 Proof of Theorem 1 when p = 1 and d = 1

For simplicity, we work with periodic functions of period 2π (for non-periodic functions, see Remark 1 in the Introduction). All integrals, L^p norms, etc., are

understood on the interval $(0, 2\pi)$. We must prove that (with $\varepsilon = 1 - s$) for all $\varepsilon \in (0, 1/2]$,

(1)
$$C\varepsilon \iint \frac{|f(x)-f(y)|}{|x-y|^{2-\varepsilon}} dx dy \ge ||f-\int f||_{L^{1/\varepsilon}}.$$

Write the left side as

(2)
$$\varepsilon \int \frac{1}{|h|^{2-\varepsilon}} ||f - f_h||_1 dh \sim \varepsilon \sum_{k>0} 2^{k(2-\varepsilon)} \int_{|h|\sim 2^{-k}} ||f - f_h||_1 dh.$$

For $|h| \sim 2^{-k}$,

$$\|f - f_h\|_1 \ge \|(f - f_h) * F_{N_k}\|_1$$

$$= \left(N_k = 2^{k-100}, F_N(x) = \sum_{|n| \le N} \frac{N - |n|}{N} e^{inx} = \text{Féjer kernel}\right),$$

$$\begin{split} \bigg\| \sum_{|n| < N_k} \frac{N_k - |n|}{N_k} \hat{f}(n) (e^{inh} - 1) e^{inx} \bigg\|_1 \sim \\ 2^{-k} \bigg\| \sum_{|n| < N_k} \frac{N_k - |n|}{N_k} n \hat{f}(n) e^{inx} \bigg\|_1 \qquad \text{(by the choice of } N_k\text{)}. \end{split}$$

This last equivalence is justified via a smooth truncation as in the following

Lemma 1.
$$\left\| \sum_{|n| < N} \hat{f}(n) (e^{inh} - 1) e^{inx} \right\|_1 \gtrsim \frac{1}{N} \left\| \sum_{|n| < N} n \hat{f}(n) e^{inx} \right\|_1$$
 for $|h| < \frac{1}{100N}$.

Proof. Write

$$\left\| \sum_{|n| < N} n \hat{f}(n) e^{inx} \right\|_{1} \le \left\| \sum_{|n| < N} \hat{f}(n) (e^{inh} - 1) e^{inx} \right\|_{1} \cdot \left\| \sum_{i} \varphi\left(\frac{n}{N}\right) \frac{n}{e^{inh} - 1} e^{inx} \right\|_{1},$$

where $0 \le \varphi \le 1$ is a smooth function with

$$\varphi(t) = \begin{cases}
1 & \text{for } |t| \le 1, \\
0 & \text{for } |t| \ge 2.
\end{cases}$$

We have from assumption

$$\left\| \sum \varphi\left(\frac{n}{N}\right) \frac{n}{e^{inh} - 1} e^{inx} \right\|_{1} \sim N \left\| \sum \varphi\left(\frac{n}{N}\right) \frac{nh}{e^{inh} - 1} e^{inx} \right\|_{1}$$

and the second factor remains uniformly bounded. This may be seen by expanding

$$\frac{y}{e^{iy}-1}\sim\frac{1}{i}+O(y)$$

for $|y| < \frac{1}{50}$ and using standard multiplier bounds.

We now return to the proof of Theorem 1 (p = 1, d = 1). Substitution in (2) thus gives

(3)
$$\varepsilon \sum_{k\geq 0} 2^{-\varepsilon k} \left\| \sum_{|n| < N_k} \frac{N_k - |n|}{N_k} n \hat{f}(n) e^{inx} \right\|_1.$$

Set

$$k_0 = 10/\varepsilon$$
.

For $k_0 < k < 2k_0$, minorate (using Lemma 1)

$$\left\| \sum_{|n| < N_k} \frac{N_k - |n|}{N_k} n \hat{f}(n) e^{inx} \right\|_1 \gtrsim \left\| \sum_{|n| < N_{k_0}} \frac{N_{k_0} - |n|}{N_{k_0}} n \hat{f}(n) e^{inx} \right\|_1$$

and therefore

$$(3) \gtrsim \left\| \sum_{|n| < N_{k_0}} \frac{N_{k_0} - |n|}{N_{k_0}} n \hat{f}(n) e^{inx} \right\|_{1}$$

$$= \left\| \sum_{|n| < N_{k_0}} \frac{N_{k_0} - |n|}{N_{k_0}} \hat{f}(n) e^{inx} \right\|_{W^{1,1}}$$

$$\geq \left\| \sum_{0 < |n| < N_{k_0}} \frac{N_{k_0} - |n|}{N_{k_0}} \hat{f}(n) e^{inx} \right\|_{\infty}.$$

Next write also

(5)
$$\begin{aligned} & (3) \gtrsim \varepsilon \sum_{r \geq 1} 2^{-r} \sum_{\left[\frac{r+2}{\varepsilon}\right] \leq k < \left[\frac{r+3}{\varepsilon}\right]} \left\| \sum_{|n| < N_k} \frac{N_k - |n|}{N_k} n \hat{f}(n) e^{inx} \right\|_1 \\ & \gtrsim \sum_{r \geq 1} 2^{-r} \left\| \sum_{|n| < 2^{\left[\frac{r+1}{\varepsilon}\right]}} \frac{2^{\left[\frac{r+1}{\varepsilon}\right]} - |n|}{2^{\left[\frac{r+1}{\varepsilon}\right]}} e^{inx} \right\|_1. \end{aligned}$$

Denote for each r by $\lambda_r = \{\lambda_r(n) : n \in \mathbb{Z}\}$ the following multiplier

Thus

$$\lambda_r(n) = \lambda_r(-n)$$
 and $\left\| \sum \lambda_r(n)e^{inx} \right\|_1 < C.$

(This multiplier may be reconstructed from Féjer kernels F_N with $N=2^{\left[\frac{r+1}{\epsilon}\right]},2^{\left[\frac{r}{\epsilon}\right]},2^{\left[\frac{r-1}{\epsilon}\right]}.$)

Also

(6)
$$\left\| \sum_{|n| < 2^{\left[\frac{r+1}{\epsilon}\right]}} \frac{2^{\left[\frac{r+1}{\epsilon}\right]} - |n|}{2^{\left[\frac{r+1}{\epsilon}\right]}} n \hat{f}(n) e^{inx} \right\|_{1} \gtrsim \left\| \sum_{2^{\left[\frac{r-1}{\epsilon}\right]} < |n| < 2^{\left[\frac{r+1}{\epsilon}\right]}} \lambda_{r}(n) n \hat{f}(n) e^{inx} \right\|_{1}$$

and

(7)
$$(5) \gtrsim \sum_{r \geq 1} 2^{-r} \left\| \sum_{\substack{2^{\left[\frac{r-1}{r}\right]} < |n| < 2^{\left[\frac{r+1}{r}\right]}}} \lambda_r(n) (\operatorname{sign} n) |n| \ \hat{f}(n) e^{inx} \right\|_1.$$

We claim that for q > 2,

(8)
$$\left\| \sum_{N_1 < |n| < N_2} \hat{g}(n) e^{inx} \right\|_q \le C N_1^{-1/q} \left\| \sum_{N_1 < |n| < N_2} |n| (\operatorname{sign} n) \hat{g}(n) e^{inx} \right\|_1,$$

with the constant C independent of q.

Applying (8) with

$$q=1/\varepsilon,\quad \hat{g}(n)=\lambda_r(n)\hat{f}(n),\quad N_1=2^{\left[\frac{r-1}{\varepsilon}\right]},\ N_2=2^{\left[\frac{r+1}{\varepsilon}\right]},$$

we obtain the minoration

(9)
$$(7) \gtrsim \sum_{r \geq 1} \left\| \sum_{\substack{2^{\left[\frac{r-1}{\epsilon}\right]} < |n| < 2^{\left[\frac{r+1}{\epsilon}\right]}}} \lambda_r(n) \hat{f}(n) e^{inx} \right\|_q.$$

By construction,

$$\sum_{r>1} \lambda_r(n) = 1 \quad \text{ for } |n| > 2^{[1/\epsilon]}.$$

Using (4) together with the triangle inequality yields

LHS in (1)
$$\gtrsim$$
 (3) + (8) \gtrsim $\left\| \sum_{n \neq 0} \hat{f}(n) e^{inx} \right\|_q$,

which proves the inequality.

Proof of (8). Estimate

$$\left\| \sum_{N_1 < |n| < N_2} \hat{g}(n) e^{inx} \right\|_{q} \le$$

$$\left\| \sum_{N_1 < |n| < N_2} |n|^{-1} (\operatorname{sign} n) e^{inx} \right\|_{q} \left\| \sum_{N_1 < |n| < N_2} |n| (\operatorname{sign} n) \hat{g}(n) e^{inx} \right\|_{1},$$

where the first factor equals

$$\left\| \sum_{N_{1} < n < N_{2}} \frac{1}{n} \sin nx \right\|_{q}$$

$$\lesssim \left\| \sum_{\log N_{1} < k < \log N_{2}} \left| \sum_{n \sim 2^{k}} \frac{1}{n} \sin nx \right| \right\|_{q} \quad \text{(assume } N_{1}, N_{2} \text{ powers of 2)}$$

$$\lesssim \left\| \sum_{\log N_{1} < k < \log N_{2}} \min(2^{k}|x|, 2^{-k}|x|^{-1}) \right\|_{q}$$

$$(10) \qquad \lesssim \left\| \frac{1}{1 + N_{1}|x|} \right\|_{q} \lesssim N_{1}^{-1/q}.$$

This proves (8) and completes the proof of Theorem 1 when p = 1 and d = 1.

3 **Proof of Theorem 1 when** p = 1 **and** $d \ge 2$

We have to prove that

(1)
$$\iint \frac{|f(x) - f(y)|}{|x - y|^{d+s}} dx dy \ge \frac{C(d)}{1 - s} ||f - ff||_q,$$

where q = d/(d - s). We assume d = 2. The case d > 2 is similar. Write

$$\iint \frac{|f(x) - f(y)|}{|x - y|^{d+s}} dx dy \sim \sum_{0 \le k} 2^{k(d+s)} \int_{|h| \sim 2^{-k-10}} ||f(x+h) - f(x-h)||_1 dh$$
(2)
$$\ge \sum_{\substack{|h_1| \sim 2^{-k-10} \\ |h_2| \sim 2^{-k-10}}} \inf_{n \in \mathbb{Z}^d} \hat{f}(n) (\sin n.h) e^{in.x} \Big\|_1 dh_1 dh_2.$$

Let φ be a smooth function on \mathbb{R} such that $0 \le \varphi \le 1$ and

$$\varphi(t) = \begin{cases} 1 & \text{for } |t| \le 1, \\ 0 & \text{for } |t| \ge 2. \end{cases}$$

As for d=1, consider (radial) multipliers λ_0 and λ_r , $r\geq 1$,

(3)
$$\lambda_0(n) = \varphi(2^{-1/\varepsilon}|n|),$$

$$\lambda_r(n) = \varphi(2^{-(r+1)/\varepsilon}|n|) - \varphi(2^{-r/\varepsilon}|n|),$$

where $\varepsilon = 1 - s$ and $\varepsilon \in (0, 1/2)$.

Hence

(5)

(4)
$$\sum_{\mathbf{r}} \lambda_{\mathbf{r}}(n) = 1,$$

$$\|\lambda_{\mathbf{r}}\|_{M(L^{1}, L^{1})} \leq C \qquad \text{(multiplier norm)},$$

$$\sup_{\mathbf{r}} \lambda_{0} \subset B(0, 2^{1/\varepsilon + 1}),$$

(6)
$$\operatorname{supp} \lambda_r \subset B(0, 2^{1+(r+1)/\varepsilon}) \setminus B(0, 2^{r/\varepsilon}).$$

Write

(7)
$$(2) = \sum_{1/\epsilon < k < 2/\epsilon} + \sum_{r \ge 1} \sum_{(r+1)/\epsilon < k < (r+2)/\epsilon}.$$

For $2/\varepsilon > k > 1/\varepsilon$ and $|h| < 2^{-k-10}$, (4) and (5) permit us to write

$$\left\| \sum_{n} \hat{f}(n)e^{in.x} \sin n.h \right\|_{1} \gtrsim \left\| \sum_{n} \lambda_{0}(n)\hat{f}(n)e^{in.x} \sin n.h \right\|_{1}$$
$$\sim \left\| \sum_{n} \lambda_{0}(n)(n.h)\hat{f}(n)e^{in.x} \right\|_{1};$$

and thus

$$2^{k(d+1-\varepsilon)} \int_{|h_1|,|h_2|\sim 2^{-k-10}} \left\| \sum \hat{f}(n)(\sin n.h)e^{in.x} \right\|_1 dh_1 dh_2$$

$$\gtrsim 2^{k(3-\varepsilon)} 8^{-k} \left(\left\| \sum \lambda_0(n)n_1 \hat{f}(n)e^{in.x} \right\|_1 + \left\| \sum \lambda_0(n)n_2 \hat{f}(n)e^{in.x} \right\|_1 \right)$$

$$= 2^{-k\varepsilon} \left(\left\| \partial_{x_1} \left(\sum \lambda_0(n)\hat{f}(n)e^{in.x} \right) \right\|_1 + \left\| \partial_{x_2} (\cdots) \right\| \right)$$

$$(8) \qquad \sim \left\| \sum \lambda_0(n)\hat{f}(n)e^{in.x} \right\|_{W^{1,1}}.$$

Similarly, for

$$(r+1)/\varepsilon < k < (r+2)/\varepsilon$$

we have

(9)

$$2^{k(d+1-\varepsilon)} \int_{|h_1|,|h_2|\sim 2^{-k-10}} \left\| \sum \hat{f}(n)(\sin nh)e^{in.x} \right\|_1 \gtrsim 2^{-r} \left\| \sum \lambda_r(n)\hat{f}(n)e^{in.x} \right\|_{W^{1,1}}.$$

Since in the summation (7), each of the terms (8), (9) appear at least $1/\varepsilon$ times, we have

(10)
$$\varepsilon.(2) \gtrsim \left\| \sum \lambda_0(n) \hat{f}(n) e^{in.x} \right\|_{W^{1,1}} + \sum_r 2^{-r} \left\| \sum \lambda_r(n) \hat{f}(n) e^{in.x} \right\|_{W^{1,1}}$$

Write

$$(2-s)/2 = 1 - s + s/2.$$

Then by Hölder's inequality,

(11)
$$\left\| \sum \lambda_r(n)\hat{f}(n)e^{in.x} \right\|_{2/(2-s)} \le \left\| \sum \lambda_r(n)\hat{f}(n)e^{in.x} \right\|_2^s \left\| \sum \lambda_r(n)\hat{f}(n)e^{in.x} \right\|_1^{1-s}.$$

By the Sobolev embedding theorem (d = 2),

(12)
$$\left\| \sum \lambda_r(n)\hat{f}(n)e^{in.x} \right\|_2 \le C \left\| \sum \lambda_r(n)\hat{f}(n)e^{in.x} \right\|_{W^{1,1}}.$$

We estimate the last factor in (11).

Recalling (6), we have

$$2^{1+(r+1)/\epsilon} > \max(|n_1|, |n_2|) > 2^{(r/\epsilon)-1}$$

if $\lambda_r(n) \neq 0, r \geq 1$.

Hence, with φ as above,

$$\lambda_r(n) = \lambda_r(n).(1 - \varphi)(2^{-(r-1)/\varepsilon}n_1) + \lambda_r(n).\varphi(2^{-(r-1)/\varepsilon}n_1).(1 - \varphi)(2^{-(r-1)/\varepsilon}n_2);$$

and thus

$$\left\| \sum \lambda_{r}(n)\hat{f}(n)e^{in.x} \right\|_{1} \le \left\| \sum \lambda_{r}(n)n_{1}\hat{f}(n)e^{in.x} \right\|_{1} \left\| \sum \frac{1}{n_{1}}(1-\varphi)(2^{-\frac{r-1}{\epsilon}}n_{1})e^{in.x} \right\|_{1} + \left\| \sum \lambda_{r}(n)n_{2}\hat{f}(n)e^{in.x} \right\|_{1} \left\| \sum \frac{1}{n_{2}}\varphi(2^{-\frac{r-1}{\epsilon}}n_{1})(1-\varphi)(2^{-\frac{r-1}{\epsilon}}n_{2})e^{in.x} \right\|_{1} \le \left(\left\| \sum_{n_{1}} \frac{1}{n_{1}}(1-\varphi)(2^{-\frac{r-1}{\epsilon}}n_{1})e^{in_{1}x_{1}} \right\|_{L_{x_{1}}^{1}} + \left\| \sum_{n_{2}} \frac{1}{n_{2}}(1-\varphi)(2^{-\frac{r-1}{\epsilon}}n_{2})e^{in_{2}x_{2}} \right\|_{L_{x_{2}}^{1}} \right)$$

$$(13)$$

$$\times \left\| \sum \lambda_r(n) \hat{f}(n) e^{in.x} \right\|_{W^{1,1}}$$

Since $(1-\varphi)(2^{-(r-1)/\varepsilon}n_1)=0$ for $|n_1|\leq 2^{(r-1)/\varepsilon}$, one easily checks that

$$\left\| \sum_{n_1} \frac{1}{n_1} (1 - \varphi) (2^{-(r-1)/\varepsilon} n_1) \varepsilon^{i n_1 x_1} \right\|_{L^1_{x_1}} \lesssim \sum_{\ell \ge (r-1)/\varepsilon} 2^{-\ell} < 2^{(r-2)/\varepsilon}.$$

Similarly,

$$\left\| \sum_{n_2} \frac{1}{n_2} (1 - \varphi) (2^{-(r-1)/\varepsilon} n_2) e^{in_2 x_2} \right\|_{L^1_{x_2}} \le 2^{-(r-2)/\varepsilon}.$$

Thus (13) implies that

(14)
$$\left\| \sum \lambda_r(n) \hat{f}(n) e^{in.x} \right\|_1 \le 2^{-(r-2)/\varepsilon} \left\| \sum \lambda_r(n) \hat{f}(n) e^{in.x} \right\|_{W^{1,1}}$$

Substitution of (12), (14) in (11) gives

$$\left\| \sum \lambda_{r}(n)\hat{f}(n)e^{in.x} \right\|_{2/(2-s)} \lesssim 2^{-(r-2)(1-s)/\varepsilon} \left\| \sum \lambda_{r}(n)\hat{f}(n)e^{in.x} \right\|_{W^{1,1}}$$

$$\sim 2^{-r} \left\| \sum \lambda_{r}(n)\hat{f}(n)e^{in.x} \right\|_{W^{1,1}}.$$
(15)

By (12), (15),

$$\varepsilon.(2) \ge \left\| \sum_{n} \lambda_0(n) \hat{f}(n) e^{in.x} \right\|_2 + \sum_{n \ge 1} \left\| \sum_{n} \lambda_n(n) \hat{f}(n) e^{in.x} \right\|_{2/(2-s)}$$

$$\ge \left\| f - \int f \right\|_{2/(2-s)}$$

by (3).

This proves (1) and completes the proof of Theorem 1 when p = 1.

4 Square function inequalities

We present here some known inequalities used in the proof of Theorem 1 when p > 1. Let $\{\Delta_j f\}_{j=1,2,\dots}$ be a Littlewood-Paley decomposition with $\Delta_j f$ obtained from a Fourier multiplier of the form $\varphi(2^{-j}|n|) - \varphi(2^{-j+1}|n|)$ with $0 \le \varphi \le 1$ a smooth function satisfying $\varphi(t) = 1$ for $|t| \le 1$ and $\varphi(t) = 0$ for |t| > 2.

Recall the square-function inequality for $1 < q < \infty$:

(1)
$$\frac{1}{C(q)} \left\| \left(\sum |\Delta_j f|^2 \right)^{1/2} \right\|_q \le \|f\|_q \le C(q) \left\| \left(\sum |\Delta_j f|^2 \right)^{1/2} \right\|_q.$$

We also consider square-functions with respect to a martingale filtration. Denote by $\{\mathbb{E}_i\}$ the expectation operators with respect to a dyadic partition of $[0,1]^d$ and

(2)
$$\widetilde{\Delta}_{i}f = (\mathbb{E}_{i} - \mathbb{E}_{i-1})f$$

the martingale differences.

We use the square-function inequality

(3)
$$||f||_q \le C\sqrt{q} \left\| \left(\sum |\widetilde{\Delta}_j f|^2 \right)^{1/2} \right\|_q, \quad \infty > q \ge 2,$$

which is precise in terms of the behaviour of the constant for $q \to \infty$ (see [4] and also the Appendix for a proof of (3)).

Remark 2. One should expect (3) also to hold if $\widetilde{\Delta}_j$ is replaced by Δ_j above, but we do not need this fact.

We do require the following inequality later on.

Let

$$p < q$$
 and $s = d(1/p - 1/q) \ge \frac{1}{2}$.

Then, for $q \geq 2$,

(4)
$$||f||_q \le C\sqrt{q} \left[\sum_k (2^{ks} ||\Delta_k f||_p)^2 \right]^{1/2}.$$

Proof of (4). It follows from (3) that since $q \ge 2$,

(5)
$$||f||_q \le C\sqrt{q} \bigg(\sum_j ||\widetilde{\Delta}_j f||_q^2 \bigg)^{1/2}.$$

Write

$$\widetilde{\Delta}_{j}f = \sum_{k \leq j} \widetilde{\Delta}_{j} \Delta_{k} f + \sum_{k > j} \widetilde{\Delta}_{j} \Delta_{k} f,$$

$$\|\widetilde{\Delta}_{j}f\|_{q} \lesssim \sum_{k \leq j} 2^{k-j} \|\Delta_{k}f\|_{q} + \sum_{k > j} 2^{js} \|\Delta_{k}f\|_{p}$$

$$\lesssim \sum_{k \leq j} 2^{k-j} (2^{ks} \|\Delta_{k}f\|_{p}) + \sum_{k > j} 2^{(j-k)s} (2^{ks} \|\Delta_{k}f\|_{p}).$$
(6)

Substitution of (6) in (5) gives

$$||f||_{q} \leq C\sqrt{q} \left\{ \left(\sum_{k \leq j} (j-k)^{2} 4^{k-j} (2^{ks} ||\Delta_{k} f||_{p})^{2} \right)^{1/2} + \left(\sum_{k > j} (k-j)^{2} 4^{(j-k)s} (2^{ks} ||\Delta_{k} f||_{p})^{2} \right)^{1/2} \right\}$$

$$\leq C\sqrt{q} \left(\sum_{k} (2^{ks} ||\Delta_{k} f||_{p})^{2} \right)^{1/2}.$$
(7)

5 Proof of Theorem 1 when 1

Write

$$\iint \frac{|f(x) - f(y)|^p}{|x - y|^{d + ps}} dx dy \sim \sum_{k \ge 0} 2^{k(d + ps)} \int_{|h| \sim 2^{-k - 10}} ||f(x + h) - f(x - h)||_p^p dh$$

$$\ge \sum_{k \ge 0} 2^{k(d + ps)} \int_{|h| \sim 2^{-k - 10}} \left\| \sum_{k \ge 0} \hat{f}(n)(\sin n \cdot h) e^{in \cdot x} \right\|_p^p dh.$$

Following the argument in Section 3 (formula (10)), we get again for

$$(2) s = d(1/p - 1/q), 1 - s = \varepsilon$$

(3)
$$\varepsilon.(1) \gtrsim \sum_{r} \left(2^{-r} \left\| \sum_{n} \lambda_{r}(n) \hat{f}(n) e^{in.x} \right\|_{W^{1,p}} \right)^{p},$$

where the multipliers λ_r are defined as before.

Case d = 1

Define

$$f_r = \sum_n \lambda_r(n) \hat{f}(n) e^{in \cdot x}.$$

We make two estimates.

First write

$$f_r = \left(\sum n\lambda_r(n)\hat{f}(n)e^{in.x}\right) * \left(\sum_{2^{r/\epsilon} < |n| < 2^{(r+1)/\epsilon}} \frac{1}{n}e^{in.x}\right),$$

which implies

(4)
$$||f_r||_q \le ||f_r||_{W^{1,p}} \left\| \sum_{2r/\epsilon$$

and, by estimate (10) in Section 2,

(5)
$$||f_r||_q \lesssim 2^{-\frac{r}{\epsilon}(\frac{1}{p'} + \frac{1}{q})} ||f_r||_{W^{1,p}} = 2^{-\frac{r}{\epsilon}(1-s)} ||f_r||_{W^{1,p}} = 2^{-r} ||f_r||_{W^{1,p}}.$$

Estimate then

(6)
$$||f||_q \le \sum_r ||f_r||_q \le C \sum_r (2^{-r} ||f_r||_{W^{1,p}}).$$

Next apply inequality (4) of Section 4. Observe that

$$|\Delta_k f| \leq \sum_r |\Delta_k f_r|,$$

where, by construction, there are, for fixed k, at most two nonvanishing terms.

Thus

(7)
$$\|\Delta_k f\|_p^2 \lesssim \sum_r \|\Delta_k f_r\|_p^2.$$

Also, for fixed r,

(8)
$$\sum_{k} (2^{ks} \|\Delta_k f_r\|_p)^2 = \sum_{r} 4^{-k\varepsilon} \|\Delta_k f_r\|_{W^{1,p}}^2 \lesssim \frac{1}{\varepsilon} 4^{-r} \|f_r\|_{W^{1,p}}^2.$$

Substituting (7), (8) in (4) of Section 4 gives

$$(9) ||f||_q \lesssim C\sqrt{q} \left[\sum_k \sum_r (2^{ks} ||\Delta_k f_r||_p)^2 \right]^{1/2} \leq C\sqrt{q/\varepsilon} \left[\sum_r (2^{-r} ||f_r||_{W^{1,p}})^2 \right]^{1/2},$$

which is the second estimate.

Interpolation between (6) and (9) thus implies

(10)
$$||f||_q \le C(\sqrt{q/\varepsilon})^{2(1-1/p)} \left[\sum_r (2^{-r} ||f_r||_{W^{1,p}})^p \right]^{1/p}.$$

Recalling (3) and also (2) (which implies that $1 - \varepsilon = 1/p - 1/q < 1/p$, hence $\varepsilon > 1 - 1/p$) we obtain

(11)
$$\varepsilon.(1) \gtrsim (1/q)^{p-1} ||f||_q^p,$$

which gives the required inequality.

Case d > 1

We distinguish two cases.

Case A: 0 < 1/p - 1/d is not near 0.

Case B: 1/p - 1/d is near 0.

Observe that case B may only happen for d=2 and p near 2 (we assumed 1).

Case A.

Define q_1 by

(12)
$$1 = d(1/p - 1/q_1),$$

so that $q < q_1$ and q_1 is bounded from above by assumption.

Thus we have the Sobolev inequality

$$||q||_{q_1} < C||q||_{W^{1,p}}.$$

Next, we make the obvious adjustment of the argument in Section 3, (11)–(15). Thus Hölder's inequality gives

(14)
$$||f_r||_q \le ||f_r||_{q_1}^{1-\theta} ||f_r||_q^{\theta},$$

with

$$1/q = (1 - \theta)/q_1 + \theta/p$$
, hence $\theta = 1 - s = \varepsilon$ by (2), (12).

Hence, by (13),

(15)
$$||f_r||_q \le C||f_r||_{W^{1,p}}^{1-\varepsilon}||f_r||_p^{\varepsilon}.$$

To estimate $||f_r||_p$, proceed as in (13) of Section 3. Thus

(16)
$$||f_r||_p \lesssim \left\| \sum_n \frac{1}{n} (1 - \varphi) (2^{-(r-1)/\varepsilon} n) e^{inx} \right\|_{L^1_x(\mathbb{T})} ||f_r||_{W^{1,p}}$$

$$\lesssim 2^{-(r-1)/\varepsilon} ||f_r||_{W^{1,p}}.$$

Substituting (16) in (15), we get

(17)
$$||f_r||_q \lesssim 2^{-r} ||f_r||_{W^{1,p}}.$$

Substituting (17) in (3) gives (since q is bounded by case A hypothesis)

(18)
$$\varepsilon.(1) \gtrsim \sum_{r} \|f_r\|_q^p \sim \sum_{r} \left\| \left(\sum_{j} |\Delta_j f_r|^2 \right)^{1/2} \right\|_q^p$$
$$\gtrsim \left\| \left(\sum_{r,j} |\Delta_j f_r|^2 \right)^{1/2} \right\|_q^p$$
$$\gtrsim \left\| \left(\sum_{j} |\Delta_j f|^2 \right)^{1/2} \right\|_q^p \sim \|f\|_q^p$$

(the second inequality requires distinction of the cases $q \ge 2$ and $p < q \le 2$). Now (18) gives the required inequality.

Case B.

Thus d = 2 and p is near 2.

Going back to (3) and applying (1), (4) of Section 4, we obtain

(19)
$$\varepsilon.(1) \gtrsim \sum_{r} (2^{-r} ||f_r||_{W^{1,p}})^p$$

$$\gtrsim \left(\sum_{r} 4^{-r} \sum_{j} ||\Delta_j f_r||_p^2 4^j\right)^{p/2}$$

$$\gtrsim \left(\sum_{j} (2^{sj} ||\Delta_j f||_p)^2\right)^{p/2}$$

$$\gtrsim q^{-p/2} ||f||_q^p,$$

where

(20)
$$q^{-p/2} = (1/p - s/2)^{p/2} \sim (2 - ps)^{p-1},$$

which again gives the required inequality.

6 Proof of Theorem 1 when $p \ge 2$

From (3) in Section 5, we now get the minoration

(1)
$$\varepsilon.(1) \gtrsim \sum_{j} (2^{sj} ||\Delta_{j} f||_{p})^{p},$$

which we use to majorize $||f||_a$.

We already have inequality (4) of Section 5; thus

(2)
$$||f||_q \le C\sqrt{q} \bigg(\sum_{i} (2^{sj} ||\Delta_j f||_p)^2 \bigg)^{1/2}.$$

Our aim is to prove that

(3)
$$||f||_q \le Cq^{1-1/p} \bigg(\sum_j (2^{sj} ||\Delta_j f||_p)^p \bigg)^{1/p},$$

which will give the required inequality together with (1).

Using interpolation for $2 \le p < d/s$, it clearly suffices to establish (3) for large values of q. To prove (3), we assume $2 \le p \le 4$ (other cases may be treated by adaption of the argument presented below). Assume further (taking the previous comment into account) that

$$(4) q \ge 2p.$$

Again by interpolation, (3) will follow from (2) and the inequality

(5)
$$||f||_q \le Cq^{\frac{3}{4}} \bigg(\sum_j (2^{sj} ||\Delta_j f||_p)^4 \bigg)^{1/4}.$$

We use the notation from Section 4 and start from the martingale square function inequality (3) in Section 4; thus

(6)
$$||f||_q \le C\sqrt{q} \left\| \left(\sum |\widetilde{\Delta}_j f|^2 \right)^{1/2} \right\|_q.$$

Write

$$|\widetilde{\Delta}_j f| \leq \sum_k |\widetilde{\Delta}_j \Delta_k f| = \sum_{m \in \mathbb{Z}} |\widetilde{\Delta}_j \Delta_{j+m} f|$$

(putting $\Delta_k = 0$ for k < 0).

Writing

(7)
$$\left\| \left(\sum_{j} |\widetilde{\Delta}_{j} f|^{2} \right)^{1/2} \right\|_{q} \leq \sum_{m \in \mathbb{Z}} \left\| \left(\sum_{j} |\widetilde{\Delta}_{j} \Delta_{j+m} f|^{2} \right)^{1/2} \right\|_{q},$$

we estimate each summand.

Fix m. Write

(8)
$$\left\| \left(\sum_{j} |\widetilde{\Delta}_{j} \Delta_{j+m} f|^{2} \right)^{1/2} \right\|_{q}^{4} = \left\| \left(\sum_{j} |\widetilde{\Delta}_{j} \Delta_{j+m} f|^{2} \right)^{2} \right\|_{q/4} \\ \leq 2 \sum_{j_{1} \leq j_{2}} \left\| |\widetilde{\Delta}_{j_{1}} \Delta_{j_{1}+m} f|^{2} |\widetilde{\Delta}_{j_{2}} \Delta_{j_{2}+m} f|^{2} \right\|_{q/4}$$

and

$$\| |\widetilde{\Delta}_{j_{1}} \Delta_{j_{1}+m} f|^{2} |\widetilde{\Delta}_{j_{2}} \Delta_{j_{2}+m} f|^{2} \|_{q/4}$$

$$= \left[\int |\widetilde{\Delta}_{j_{1}} \Delta_{j_{1}+m} f|^{q/2} .\mathbb{E}_{j_{1}} \left[|\widetilde{\Delta}_{j_{2}} \Delta_{j_{2}+m} f|^{q/2} \right] \right]^{4/q}$$

$$\leq \|\widetilde{\Delta}_{j_{1}} \Delta_{j_{1}+m} f\|_{q}^{2} \| \left(\mathbb{E}_{j_{1}} \left[|\widetilde{\Delta}_{j_{2}} \Delta_{j_{2}+m} f|^{q/2} \right] \right)^{2/q} \|_{q}^{2}$$

$$\leq 4^{d(j_{2}-j_{1})(1/p-2/q)} \|\widetilde{\Delta}_{j_{1}} \Delta_{j_{1}+m} f\|_{q}^{2} \| \left(\mathbb{E}_{j_{1}} \left[|\widetilde{\Delta}_{j_{2}} \Delta_{j_{2}+m} f|^{p} \right] \right)^{1/p} \|_{q}^{2}$$

$$\leq 4^{d(j_{2}-j_{1})(1/p-2/q)} 4^{dj_{1}(1/p-1/q)} \|\widetilde{\Delta}_{j_{1}} \Delta_{j_{1}+m} f\|_{q}^{2} \|\widetilde{\Delta}_{j_{2}} \Delta_{j_{2}+m} f\|_{p}^{2}.$$

$$(9)$$

Assume $m \leq 0$,

Estimate

(10)
$$\|\widetilde{\Delta}_{j_1}\Delta_{j_1+m}f\|_q \lesssim 2^m \|\Delta_{j_1+m}f\|_q \leq 2^m 2^{d(j_1+m)(1/p-1/q)} \|\Delta_{j_1+m}f\|_p,$$

(11)
$$\|\widetilde{\Delta}_{j_2} \Delta_{j_2+m} f\|_p \lesssim 2^m \|\Delta_{j_2+m} f\|_p.$$

Substitution of (10), (11) in (9) gives

$$(12) \atop 4^{(1-d(\frac{1}{p}-\frac{1}{q}))m+m} 4^{-\frac{d}{q}(j_2-j_1)} [2^{d(\frac{1}{p}-\frac{1}{q})(j_1+m)} \|\Delta_{j_1+m}f\|_p]^2 [2^{d(\frac{1}{p}-\frac{1}{q})(j_2+m)} \|\Delta_{j_2+m}f\|_p]^2$$

where

$$d(1/p-1/q)=s.$$

Summing (12) for $j_1 < j_2$ and applying Cauchy-Schwarz implies for m < 0

(13)
$$(8) < 4^{(2-s)m} \left(\sum_{\ell \ge 0} 4^{-\frac{d}{q}\ell} \right) \left[\sum_{j} (2^{sj} || \Delta_{j} f ||_{p})^{4} \right]$$

$$\lesssim 4^{(2-s)m} q \left[\sum_{j} (2^{sj} || \Delta_{j} f ||_{p})^{4} \right].$$

Assume next m > 0.

Estimate

$$\|\widetilde{\Delta}_{j_1}\Delta_{j_1+m}f\|_q \lesssim 2^{d_{j_1}(1/p-1/q)}\|\Delta_{j_1+m}f\|_p$$

and

$$(9) \leq 4^{d(j_2-j_1)(\frac{1}{p}-\frac{2}{q})} 16^{dj_1(\frac{1}{p}-\frac{1}{q})} \|\Delta_{j_1+m}f\|_p^2 \|\Delta_{j_2+m}f\|_p^2$$

$$(14) \qquad \leq 16^{-ms} 4^{-(j_2-j_1)\frac{d}{q}} \|2^{s(j_1+m)} \Delta_{j_1+m}f\|_p^2 \|2^{s(j_2+m)} \Delta_{j_2+m}f\|_p^2$$

Summing over $j_1 < j_2$ implies that for m > 0,

(15)
$$(8) \lesssim 16^{-ms} q \left[\sum_{j} (2^{sj} || \Delta_j f ||_p)^4 \right].$$

Summing (13), (15) in m implies that

$$(7) \leq \left(\sum_{m \leq 0} 2^{(1-s/2)m} + \sum_{m > 0} 2^{-sm}\right) q^{1/4} \left[\sum_{j} (2^{sj} \|\Delta_{j} f\|_{p})^{4}\right]^{1/4}$$

$$\leq q^{1/4} \left[\sum_{j} (2^{sj} \|\Delta_{j} f\|_{p})^{4}\right]^{1/4}.$$

To bound $||f||_q$, apply (6), which introduces an additional $q^{1/2}$ -factor. This establishes (5) and completes the argument and the proof of Theorem 1.

7 Proof of Theorem 2

We make use of the following two lemmas

Lemma 2. Let $I \subset \mathbb{R}$ be an interval and let $\psi : I \to \mathbb{Z}$ be any measurable function. Then there exists $k \in \mathbb{Z}$ such that

$$|\{x \in I; \psi(x) \neq k\}| \leq 2 \left(C^* \varepsilon \int_I \int_I \frac{|\psi(x) - \psi(y)|^2}{|x - y|^{2 - \varepsilon}} dx dy\right)^{1/\varepsilon}$$

for all $\varepsilon \in (0, 1/2]$, where C^* is the absolute constant in Corollary 1 (inequality (10) in Section 1).

Proof of Lemma 2. After scaling and shifting, we may assume that I = (-1, +1). For each $k \in \mathbb{Z}$, set

$$A_k = \{x \in I : \psi(x) < k\}.$$

Note that A_k is nondecreasing, $\lim_{k\to-\infty} |A_k| = 0$, and $\lim_{k\to+\infty} |A_k| = 2$. Thus, there exists $k \in \mathbb{Z}$ such that

(1)
$$|A_k| \le 1$$
 and $|A_{k+1}| > 1$.

Applying Corollary 1 with $A = A_k$ and with $A = A_{k+1}$, we find (using (1))

$$|A_k| \le |A_k| \, |^c A_k| \le \left(C^* \varepsilon \int_{A_k} \int_{c_{A_k}} \frac{dx dy}{|x - y|^{2 - \varepsilon}} \right)^{1/\varepsilon}$$

and

(3)
$$|{}^{c}A_{k+1}| \le |A_{k+1}| |{}^{c}A_{k+1}| \le \left(C^{*}\varepsilon \int_{A_{k+1}} \int_{cA_{k+1}} \frac{dxdy}{|x-y|^{2-\varepsilon}}\right)^{1/\varepsilon}.$$

On the other hand,

$$|\psi(x) - \psi(y)| \ge 1$$
 for a.e. $x \in A_k$, $y \in {}^cA_k$

and

$$|\psi(x) - \psi(y)| \ge 1$$
 for a.e. $x \in A_{k+1}, y \in {}^{c}A_{k+1}$.

Therefore,

$$\begin{split} |\{x \in I; \psi(x) \neq k\}| &= |A_k| + |^c A_{k+1}| \\ &\leq 2 \bigg(C^* \varepsilon \int_I \int_I \frac{|\psi(x) - \psi(y)|^2}{|x - y|^{2 - \varepsilon}} dx dy \bigg)^{1/\varepsilon}. \end{split}$$

Lemma 3. If $\alpha > 0$, a < b < x, and $A \subset (a, b)$ is measurable, then

$$\int_{(a,b)\setminus A} \frac{dy}{(x-y)^{\alpha}} \ge \int_a^{b-|A|} \frac{dy}{(x-y)^{\alpha}};$$

similarly, if x < a < b, then

$$\int_{(a,b)\setminus A} \frac{dy}{(y-x)^{\alpha}} \ge \int_{a+|A|}^{b} \frac{dy}{(y-x)^{\alpha}}.$$

The proof of Lemma 3 is elementary and left to the reader.

Proof of Theorem 2. Let $\psi_{\varepsilon}: \Omega = (-1, +1) \to \mathbb{R}$ be any measurable function such that $u_{\varepsilon} = e^{i\psi_{\varepsilon}}$. We have to prove that for all $\varepsilon < 1/2$,

(4)
$$\|\psi_{\varepsilon}\|_{H^{(1-\varepsilon)/2}(\Omega)} \ge c\varepsilon^{-1/2}$$

for some absolute constant c to be determined.

We argue by contradiction and assume that for some $\varepsilon < 1/2$,

(5)
$$\|\psi_{\varepsilon}\|_{H^{(1-\varepsilon)/2}(\Omega)} < \eta \varepsilon^{-1/2}.$$

We reach a contradiction if η is less than some absolute constant. Set

$$\psi = rac{1}{2\pi}(\psi_{arepsilon} - arphi_{arepsilon}),$$

so that $\psi:\Omega\to\mathbb{Z}$; recall that $u_{\varepsilon}=e^{i\varphi_{\varepsilon}}$ and the function φ_{ε} is defined by

$$arphi_{m{arepsilon}}(x) = egin{cases} 0 & ext{for } -1 < x < 0, \ 2\pi x/\delta & ext{for } 0 < x < \delta, \ 2\pi & ext{for } \delta < x < 1, \end{cases}$$

where $\delta = e^{-1/\epsilon}$.

A straightforward computation (using the fact that ψ takes values in \mathbb{Z}) shows that

(6)
$$|\psi(x) - \psi(y)| \le |\psi_{\varepsilon}(x) - \psi_{\varepsilon}(y)|$$
 for a.e. $x, y \in (-1, 2\delta/3)$

and

(7)
$$|\psi(x) - \psi(y)| \le |\psi_{\varepsilon}(x) - \psi_{\varepsilon}(y)|$$
 for a.e. $x, y \in (\delta/3, 1)$.

Applying Lemma 2 with $I=(-1,2\delta/3)$ and $I=(\delta/3,1)$, together with (5), (7) and (8) yields the existence of $\ell, m \in \mathbb{Z}$ such that

$$|\{x \in (-1, 2\delta/3); \psi(x) \neq \ell\}| \le 2(C^*\eta^2)^{1/\epsilon}$$

and

$$|\{x \in (x \in \delta/3, 1); \psi(x) \neq m\}| \le 2(C^*\eta^2)^{1/\epsilon}.$$

We choose η in such a way that

$$4(C^*\eta^2)^{1/\varepsilon} < \delta/3$$
 for $\varepsilon < 1/2$.

for example,

$$\eta^2 < 1/4eC^*.$$

It follows that $\ell=m$. Without loss of generality (after adding a constant to ψ_{ε}), we may assume that

$$\ell=m=0.$$

Therefore,

(10)
$$\psi_{\varepsilon}(x) = \varphi_{\varepsilon}(x) \quad \text{ for } x \in [(-1,0)\backslash A] \cup [(\delta,1)\backslash B],$$

where

$$A = \{x \in (-1,0); \psi(x) \neq 0\}$$

and

$$B = \{x \in (\delta, 1); \psi(x) \neq 0\},\$$

with

$$(11) |A| < \delta/6, |B| < \delta/6.$$

From (11) and the definition of φ_{ε} , we have

$$\varepsilon \int_{\Omega} \int_{\Omega} \frac{|\psi_{\varepsilon}(x) - \psi_{\varepsilon}(y)|^{2}}{|x - y|^{2 - \varepsilon}} dx dy \ge \varepsilon \int_{-1}^{0} dx \int_{0}^{1} \frac{|\psi_{\varepsilon}(x) - \psi_{\varepsilon}(y)|^{2}}{|x - y|^{2 - \varepsilon}} dy$$

$$\ge \varepsilon \int_{(-1,0)\setminus A} dx \int_{(\delta,1)\setminus B} \frac{|\varphi_{\varepsilon}(x) - \varphi_{\varepsilon}(y)|^{2}}{|x - y|^{2 - \varepsilon}} dy$$

$$\ge \varepsilon \int_{(-1,0)\setminus A} dx \int_{(\delta,1)\setminus B} \frac{4\pi^{2} dy}{|x - y|^{2 - \varepsilon}}.$$

Applying Lemma 3 and (5), we find

$$\eta^{2} > \varepsilon \int_{\Omega} \int_{\Omega} \frac{|\psi_{\varepsilon}(x) - \psi_{\varepsilon}(y)|^{2}}{|x - y|^{2 - \varepsilon}} dx dy \ge \varepsilon \int_{-1}^{-|A|} dx \int_{\delta + |B|}^{1} \frac{4\pi^{2} dy}{|x - y|^{2 - \varepsilon}}$$

$$\ge \varepsilon \int_{-1}^{-\delta/6} dx \int_{\delta + \delta/6}^{1} \frac{4\pi^{2} dy}{|x - y|^{2 - \varepsilon}} = 4\pi^{2} (1 - e^{-1}) + o(1)$$

as $\varepsilon \to 0$. We obtain a contradiction for an appropriate choice of η .

Appendix

Proof of the square function inequality

Let $\{\mathcal{F}_n\}_{n=0,1,2,...}$ be refining finite partitions such that

$$\#\mathcal{F}_n = K^n$$
,
 $|Q| = K^{-n}$ if Q is an \mathcal{F}_n -atom.

(If
$$\Omega = [0,1]^d, K = 2^d$$
.)

Denote \mathbb{E}_n the \mathcal{F}_n -expectation

$$\Delta_n f = \mathbb{E}_n f - \mathbb{E}_{n-1} f$$
 (we used the notation $\widetilde{\Delta}_n f$ in Section 4),
$$Sf = \left(\sum |\Delta_n f|^2\right)^{1/2}$$
 (the square function),
$$f \leq f^* = \sup |\mathbb{E}_n f|$$
 (the maximal function).

Proposition 1.

(1)
$$\operatorname{mes}(\{|f| > \lambda ||Sf||_{\infty}\}) < e^{-c\lambda^2} \qquad (\lambda \ge 1),$$

where c = c(K) > 0 is a constant.

Proposition 2 (good- λ inequality).

(2)
$$\operatorname{mes}(\{f^* > 2\lambda, Sf < \varepsilon\lambda, \sup \mathbb{E}_{n-1}[|\Delta_n f|] < \varepsilon\lambda\}) < e^{-c/\varepsilon^2} \operatorname{mes}(\{f^* > \lambda\})$$

(0 < \varepsilon < 1).

Proposition 3.

(3)
$$||f^*||_q \leq C\sqrt{q}||Sf||_q \quad \text{for } q \geq 2.$$

We follow essentially [4].

Proof of Proposition 1. One verifies that there is a constant A = A(K) such that if φ is \mathcal{F}_n -measurable and $\mathbb{E}_{n-1}\varphi = 0$, then

$$\mathbb{E}_{n-1}[e^{\varphi - A\varphi^2}] \le 1.$$

Hence

(5)
$$\mathbb{E}_{n-1}[e^{\Delta_n f - A(\Delta_n f)^2}] \le 1$$

and, writing $S_n f = \left(\sum_{m < n} |\Delta_m f|^2\right)^{1/2}$, we have

$$\int e^{\mathbb{E}_{n}f - A(S_{n}f)^{2}} = \int e^{\mathbb{E}_{n-1}f - A(S_{n-1}f)^{2}} \mathbb{E}_{n-1}[e^{\Delta_{n}f - A(\Delta_{n}f)^{2}}]$$

$$\leq \int e^{\mathbb{E}_{n-1}f - A(S_{n-1}f)^{2}} \qquad \text{(by (5))}$$

$$< 1.$$

Thus

$$\int e^{f-A(Sf)^2} \le 1.$$

Assume $||Sf||_{\infty} \le 1$. Applying (6) to tf (t > 0 a parameter), we get

$$\int e^{tf} \le e^{At^2}, \qquad \operatorname{mes}(\{f > \lambda\}) \le e^{At^2 - t\lambda},$$

so for appropriate choice of t

$$\operatorname{mes}(\{f > \lambda\}) < e^{-\lambda^2/4A}.$$

This proves (1).

Proof of Proposition 2. This is a standard stopping time argument.

Consider a collection of maximal atoms $\{Q_{\alpha}\}\subset \bigcup \mathcal{F}_n$ such that if Q_{α} is an \mathcal{F}_n -atom, then $|\mathbb{E}_n f|>\lambda$ on Q_{α} . Thus $Q_{\alpha}\cap Q_{\beta}=\emptyset$ for $\alpha\neq\beta$. Fix α . From the maximality,

(7)
$$|\mathbb{E}_{n-1}f| \le \lambda \quad \text{ on } Q_{\alpha}.$$

Therefore,

$$\{f^* > 2\lambda, Sf < \varepsilon\lambda, \sup \mathbb{E}_{m-1}[|\Delta_m f|] < (1/K)\varepsilon\lambda\} \cap Q_{\alpha} \subset$$

$$\{(f - \mathbb{E}_n f)^* > (1 - \varepsilon)\lambda, Sf < \varepsilon\lambda, \sup \mathbb{E}_{m-1}[|\Delta_m f|] < (1/K)\varepsilon\lambda\} \cap Q_{\alpha} = (8).$$

For m > n, denote χ_m the indicator function of the set

$$Q_{\alpha} \cap \left\{ \left(\sum_{\ell=n+1}^{m-1} |\Delta_{\ell} f|^{2} \right)^{1/2} < \varepsilon \lambda \right\} \cap \left\{ \mathbb{E}_{m-1}[|\Delta_{m} f|] < \frac{1}{K} \varepsilon \lambda \right\}$$
$$\cap \bigcap_{n \le \ell \le m} \left\{ |\mathbb{E}_{\ell} f - \mathbb{E}_{n} f| \le (1 - \varepsilon) \lambda \right\} = (9).$$

Thus

$$\chi_m = \mathbb{E}_{m-1} \chi_m$$

and

$$g = \sum_{m > n} \chi_m \Delta_m f$$

is an $\{\mathcal{F}_m : m \geq n\}$ -martingale on Q_{α} .

From the definition of χ_m , we have clearly

(10)
$$S(g) = \left(\sum_{m > n} \chi_m |\Delta_m f|^2\right)^{1/2} < \varepsilon \lambda + \varepsilon \lambda \lesssim \varepsilon \lambda$$

and

$$|g| > (1 - \varepsilon)\lambda$$
 on the set (8).

From Proposition 1 and (10),

(11)
$$\operatorname{mes}(\{x \, \varepsilon Q_{\alpha}; \, |g| > (1 - \varepsilon)\lambda\}) < e^{-c/\varepsilon^2} |Q_{\alpha}|$$

hence

(12)
$$\operatorname{mes}(8) \leq e^{-c/\varepsilon^2} |Q_{\alpha}|.$$

Summing (12) over α implies

$$\begin{split} \operatorname{mes}(\{f^* > 2\lambda, & Sf < \varepsilon\lambda, \sup \mathbb{E}_{m-1}[|\Delta_m f|] < (1/K)\varepsilon\lambda\}) \\ & < e^{-c/\varepsilon^2} \sum |Q_\alpha| \le e^{-c/\varepsilon^2} \operatorname{mes}[f^* > \lambda], \end{split}$$

which is (2).

Proof of Proposition 3.

$$||f^*||_q^q = q \int \lambda^{q-1} \operatorname{mes}(\{f^* > \lambda\}) d\lambda$$

$$= 2^q q \int \lambda^{q-1} \operatorname{mes}(\{f^* > 2\lambda\}) d\lambda$$

$$(13) \qquad \leq 2^q q \int \lambda^{q-1} [\operatorname{mes}(\{Sf \ge \varepsilon \lambda\}) + \operatorname{mes}(\{\sup \mathbb{E}_{n-1}[|\Delta_n f|] \ge (\varepsilon/K)\lambda\}) + e^{-c/\varepsilon^2} \operatorname{mes}(\{f^* > \lambda\})]$$

$$< (2/\varepsilon)^q (||Sf||_q^q + K^q ||\sup \mathbb{E}_{n-1}[|\Delta_n f|]||_q^q) + 2^q e^{-c/\varepsilon^2} ||f^*||_q^q.$$

Take $1/\varepsilon \sim \sqrt{q}$, so that the last term in (13) is at most $\frac{1}{2} ||f^*||_q^q$. Thus

(14)
$$||f^*||_q < C\sqrt{q}(||Sf||_q + ||\sup \mathbb{E}_{n-1}[|\Delta_n f|]||_q).$$

Also.

$$\|\sup \mathbb{E}_{n-1}[|\Delta_n f|]\|_q \le \left(\sum_n \|\mathbb{E}_{n-1}[|\Delta_n f|]\|_q^q\right)^{1/q}$$

$$\le \left(\sum_n \|\Delta_n f\|_q^q\right)^{1/q}$$

$$\le \|Sf\|_q.$$
(15)

Proposition 3 follows from (14) and (15).

Added in proof

An alternative, more elementary, proof of Theorem 1 was given by V. Mazya and T. Shaposhnikova, On the Bourgain, Brezis and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal. (to appear).

Acknowledgment

The first author (J.B.) is partially supported by NSF Grant DMS-9801013. The second author (H.B.) is partially sponsored by a European Grant ERB FMRX CT98 0201. He is also a member of the Institut Universitaire de France. Part of this work was done during a visit of the third author (P.M.) at Rutgers University; he thanks the Department of Mathematics for its support and hospitality.

REFERENCES

- [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- [2] J. Bourgain, H. Brezis and P. Mironescu, *Lifting in Sobolev spaces*, J. Analyse Math. **80** (2000), 37-86.
- [3] J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations (J. L. Menaldi, E. Rofman and A. Sulem, eds.), a volume in honor of A. Bensoussan's 60th birthday, IOS Press, 2001, pp. 439-455.
- [4] S. Chang, T. Wilson and T. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), 217-246.
- [5] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, second edition, Springer-Verlag, Berlin, Heidelberg, New York, 1983.

[6] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, Boston, 1983.

Jean Bourgain
SCHOOL OF MATHEMATICS
INSTITUTE FOR ADVANCED STUDY
PRINCETON, NJ 08540, USA
email: bourgain@math.ias.edu

Haim Brezis

ANALYSE NUMÉRIQUE

UNIVERSITÉ P. ET M. CURIE, B.C. 187

4 PL. JUSSIEU

75252 PARIS CEDEX 05, FRANCE
email: brezis@ccr.jussieu.fr

DEPARTMENT OF MATHEMATICS
RUTGERS UNIVERSITY
HILL CENTER, BUSCH CAMPUS
110 FRELINGHUYSEN RD
PISCATAWAY, NJ 08854, USA
email: brezis@math.rutgers.edu

Petru Mironescu
DÉPARTEMENT DE MATHÉMATIQUES
UNIVERSITÉ PARIS-SUD
91405 ORSAY, FRANCE
email: Petru.Mironescu@math.u-psud.fr

(Received June 2, 2001)