LIMITING EMBEDDING THEOREMS FOR W#? WHEN s 11
AND APPLICATIONS
By

JEAN BOURGAIN, HATM BREZIS AND PETRU MIRONESCU

Dedicated to the memory of T. Wolff

1 Imntroduction

This is a follow-up of our paper [3], where we establish that

: |f(z) — f)IP »
1) lim(1 - 5)/Q A dedy ~ IVAlZe)
for any p € [1,00), where 2 is a smooth bounded domain in R,d > 1.
On the other hand, if 0 < s < 1, p > 1 and sp < d, the Sobolev inequality for
fractional Sobolev spaces (see, e.g., [1], Theorem 7.57 or [6], Section 3.3) asserts

that

(2) “f”{:v-.p(n) Z C(s,p, d)”f —ff”}[’,q(n)a
where
3 l/g=1/p—s/d.

Here we use the standard semi-norm on W#?

— P
@ nniay = [ [ 2= o

When s = 1, the analogue of (2) is the classical Sobolev inequality
(5) ”Vf"’;,p(ﬂ) Z C(p’ d)“f —ff”?,p' (Q)$

where
1/p*=1/p—-1/d and 1<p<d.
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78 J. BOURGAIN, H. BREZIS AND P. MIRONESCU

The behaviour of the best constant C(p,d) in (5) as p 1 d is known (see, e.g., [5],
Section 7.7 and also Remark 1 below); more precisely, one has

6) ”Vf”z,p(n) c{d )(d‘P)p_]”f"ff"zl’,p‘(g)'

Putting together (1), (4) and (6) suggests that (2) holds with
€] C(s,p,d) = C(d)(d - sp)?~" /(1 - s),

forall s < 1, sclose to 1 and sp < d.
This is indeed our main result. For simplicity, we work with 2 = the unit cube
Q in R%,

Theorem 1. Assumed > 1,p>1,1/2< s < 1and sp < 1. Then

® /Q QM«M > @ =211y

|1; y|d+sp
where q is given by (3) and C(d) depends only on d.

As can be seen from (8), there are two phenomena that govern the behaviour of
the constant in (8). As s 1 1, the constant gets bigger; while as s 1 d/p, the constant
deteriorates. This explains why we consider several cases in the proof.

As an application of Theorem 1 with p = 1 and f = x4, the characteristic
function of a measurable set A C @), we easily obtain

Corollary 1. Forall0 <e <1/2,

dedy d/(d—1+¢)
9 4| < ]
©)) 'A”Al_( //Alz_y|d+1 5)

Note that in the special case d = 1, (9) takes the simple form

drd 1/
w s )

for some absolute constant C*. Estimate (10) is sharp, as can be easily seen when
A is an interval.

The conclusion of Corollary 1 is related to a result stated in [3] (Remark 4).
There is, however, an important difference. In [3], the set A was fixed (independent
of £); and the statement there provides a bound for | 4| |°A| in terms of the limit, as
€ — 0, of the RHS in (9). The improved version—which requires a more delicate
argument—is used in Section 7; we apply Corollary 1 (with d = 1) to give a proof
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of a result announced in [2] (Remark E.1). Namely, on Q = (—1,+1), consider the

function
0 for —1<z<0,

ve(x) = ¢ 21z /6 for 0 <z <4,
2n for d<z <1,

where § = e~1/¢, ¢ > 0 small.
Set u. = e'¥e. It is easy to check (by scaling) that

luellgrrrz = llue = U gre < C

as ¢ — 0 and consequently ||u.||gu-e/2 < C as € = 0. On the other hand, a
straightforward computation shows that |||l ga-ey/2 ~ e71/2.

The result announced in [2] asserts that any lifting v, of u. blows up in H{1—€)/2
(at least) in the same rate as ¢,:

Theorem 2. Let 1. : Q — R be any measurable function such that u, = e*¥e.
Then
el -z > eV ce (0,1/2),

Jfor some absolute constant ¢ > 0.

Remark 1. There are various versions of the Sobolev inequality (5). All these
forms hold with equivalent constants:

Form 1. (V{|1o(@) = Aillf — fofllLe@) f € WHP(Q).

Form 2. ||[VfliLrq) 2 A2llf — foHLq(Q), for all Q-periodic functions
f e WLP(RY).

loc

Form 3. |V f||r(re) = Asl|fllLare), f € CP(RY).

Form 1 = Form 2. Obvious with 4; = A;.

Form 2 = Form 1. Any function f € W?(Q) can be extended by reflections
to a periodic function on a larger cube Q, so that Form 2 implies Form 1 with
A; > CA,, and C depends only on d.

Form 1 = Form 3. By scale invariance, Form 1 holds with the same
constant A; on the cube Qg of side R. Fix a function f € C°(R?) and let
R > diam (Supp f). We have

IVfllze(@ny 2 Arllf = f o fllLa@a)

As R — oo, we obtain Form 3 with A3 = A;.
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Form 3 = Form 2. Given a smooth periodic function f on R?, let p be a
smooth cut-off function with p = 1 on Q and p = 0 outside 2Q. Then

”V(Pf)“Lr(Rd) 2 Aa”pf”[,q(nd)

and thus
Azl fllze@) £ CUIVSllLe@) + I1flle(@))s

where C depends only on d. Replacing f by (f — f of ) and applying Poincaré’s
inequality (see, e.g., [5], Section 7.8) yields

Asllf = f£liLe@) < ClIVFliLaq)-

The reader will check easily that the same considerations hold for the fractional
Sobolev norms such as in (8). The proof of the last implication (Form 3 = Form
2) involves a Poincaré-type inequality. What we use here is the following

Fact. Let1 <p< 00,1/2 <5< 1; then

|f (=)~ fy)?
(1-s) /Q i 2 @l = fof ey
The proof of this fact is left to the reader. (It is an adaptation of the argument in
the beginning of Section 5. In (3) of Section 5 one uses an obvious lower bound:

P
(3)> ( ) nf,nu) > clf —ffIE,)

For the convenience of the reader, we have divided the proof of Theorem 1 into
several cases. The plan of the paper is the following.

1. Introduction.

2. Proof of Theorem 1 whenp=1andd = 1.

3. Proof of Theorem 1 whenp=1and d > 2.

4. Square function inequalities.

5. Proof of Theorem 1 when1 < p < 2.

6. Proof of Theorem 1 when p > 2.

7. Proof of Theorem 2.
Appendix: Proof of the square function inequality.

2 Proof of Theorem 1 whenp=1andd=1

For simplicity, we work with periodic functions of period 2 (for non-periodic
functions, see Remark 1 in the Introduction). All integrals, L? norms, etc., are
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understood on the interval (0,2r). We must prove that (with e = 1 — s) for all
e €(0,1/2],

) Ce / / dey > 1 = f fllgose.
Write the left side as
@) / dh~e Y 2K2-9) / - dh.
lhlg €“f fh”l kgo |h|~2—’¢ ”f fh”l
For |h| ~ 27%,

f = fulls 2 I(f = f&) * Fnlia
= (N;c =2k10 Fy(z) = ) -I\/'—Tlnle""z = Féjer keme]),

Inf<N

Z |n|f( )( inh _ )einz

Nk
[n|< Ny

1

Z Nk—l'n" f( )m:c

N (by the choice of Ny).
In|<Ni k

2—k

1
This last equivalence is justified via a smooth truncation as in the following

. 2 % HE|"|<N nf(n)emz i

Lemm

1
Jor |h| < 1eow

(e nh _ l)einz

Proof. Write

h .
Z nf(n iﬂ.z 1 Z f(n) :n tﬂI ”Z‘p elnh lelﬂz 1’
In|<N |n|<N

where 0 < ¢ < 1 is a smooth function with

1 for |t| <1,
o(t) =
0 for |t| > 2.

We have from assumption

) h )
So () w=ge™], ~ V| Ze(F) more™

and the second factor remains uniformly bounded. This may be seen by expanding

~N

1

y 1
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for [y| < & and using standard multiplier bounds.

We now return to the proof of Theorem 1 (p = 1,d = 1).
Substitution in (2) thus gives

3) ey 27k

k>0

Nk—'nl ¢ inx
Z A nf(n)e

[n|<Ni

1

Set
k() = 10/6.

For kg < k < 2ky, minorate (using Lemma 1)

Z Ny k, I f( ) inz Z Nko lnl f(n) ein?

In|<Ni In]< Nig Nk

R
1

1

and therefore

@z ¥ Dl jmyens

In|<Nig Nio

— Z Nko 'nlf( ) inz

k
(1< Nikgo 0

Z Nko lnlf( ) inz

0<[n|< Nig ko

1

wia

C)

Y

o o]

Next write also

@zed 2 >

r21 Rk

ol =t
) 2 Zz"” >

r>1 Ini< 2[._+._]

Nk‘]“' £ inz
Z N, nf(n)e

In| <N

1

= In|
oltH]

inz

1

Denote for each 7 by A, = {\-(n) : n € Z} the following multiplier

0 o= offl 2l =]
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Thus

z:/\,(n)ei"z <C.
1

(This multiplier may be reconstructed from Féjer kernels Fy with
N =2l olE] 2l=FH))

Ar(n) = Ap(—n) and 1

Also
2[1‘-%1] — |n| F inz £ inT
© | X mmnime z] T Amnfmen
n] <2l 554 ) ! o FH || <2l ZEH !
and
D @z Y Am)sign ) fn)en
r>1 1

2 <y <2t =

We claim that for q > 2,

®) H Y. gn)emt

N1<[n[<N2

< CNl"l/q

q

Y Inl(sign n)g(n)en

Ni<|n|<N2

1
with the constant C independent of q.
Applying (8) with

r=1

g=1/e, §(n)=xn)f(n), Ny =20, Ny =2l"F]

we obtain the minoration

) Mz

r>1

Y Amfm)ens

-1 r+1
2["_€-l<|n|<2[—:§_]

q

By construction,
> A(n)=1 for|n| > 20/,
r>1

Using (4) together with the triangle inequality yields

Z f(n)ei'nm

n#0

LHS in (1) > (3) + (8) =

’
q

which proves the inequality.
Proof of (8). Estimate

] Y s

Ny <|n|< N2

<

q

Y Inl(signn)g(n)e™™*

Ni<|n|<N;

b

H > In7'(sign n)e™™=

Ni<|n|<Na q
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where the first factor equals

1.
E —sin nz
n

Ni<n<N; q9
1
< Z Z —~sin nx (assume N;, N, powers of 2)
log N1 <k<log N2 ' n~2k n q
si X min(@al,2 4l
log N1<k<log N3 q
1 Yy
10 < || ———— 9,
( ) ~ ¥+ N]lxl . ~ "1

This proves (8) and completes the proof of Theorem 1 when p=1and d = 1.

3 Proof of Theorem 1 whenp=1and d > 2

We have to prove that

|f(z) - f()l C(d)
A ST > 227 —
M [ i sy > T - [l
where ¢ = d/(d — s). We assume d = 2. The case d > 2 is similar. Write
|f(z) = f(y)l k(d+ )/
= dzdy ~ 2rtdTs z+ h) — f(x — h)|1dh
/ o — gt W Z e 1 E B = Fa =)
) > Y okt iy >~ f(n)(sinn.h)e™2|| dhydh,.
el G 1
|ha|~2-k-1

Let ¢ be a smooth function on R such that 0 < ¢ < 1 and

1 for|t| <1,

o(t) = It <

0 forl|t > 2.

As for d = 1, consider (radial) multipliers Ag and A,,r > 1,
do(n) = p(27 V% nl),

€) Ar(n) = (27 D% n]) — p(277/|n)),
wheree =1-sande € (0,1/2).

Hence
Z)\r(n) =1,
@ IAellmqrr,ey <C  (multiplier norm),
&) supp Ao C B(0,2'/5t1),

(6) supp A\, C B(0,2'T(+V/e)\ B(0, 27/¢).
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‘Write

@) @= ¥ + ¥

1/e<k<2/e 121 (r+1)/e<k<(r+2)/e

For 2/e > k > 1/¢ and |h| < 27¥-10, (4) and (5) permit us to write

R
1

Z f(n)e™sinn.h Z Ao(n) f(n)e™* sinn.h

1

~

1

> Xo(n)(nh)f(n)e™*

and thus

ok(d+1—¢) / ” Z f(n)(sin n.h)ein.m

|Ral,|hz|~2- k10

Z 2k(3—e)8—k( EAO(n)nlf(n)ein.z

= 2% ([on, ( S ratm )

® ~ “ > Xo(n)f(n)e™

dhydhz
1

)

| Z ot fmene

10 )

wii

Similarly, for
(r+1)/e <k < (r+2)/e,

we have
)]
2k(d+1—£) / H Z f(n)(sin nh)ein.z

thyl,Jhg|~2—k—10

> A m)f (e

22
1

wil

Since in the summation (7), each of the terms (8), (9) appear at least 1/¢ times, we
have

(10)  e(2)2 H > Xo(m) f(n)e™= > A (n)f(n)e™=

+Y 2"
wii Z Wil

Write

2-s)/2=1-s5+s/2
Then by Hélder’s inequality,
an

“ > M(m)f(r)e™=

1-s

3 A(n)f(m)ei=

8
2 1

< “ 3 A(n)f(m)eins

2/(2-2)
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By the Sobolev embedding theorem (d = 2),
S M) fn)eme| < c“ > A (n)f(n)eme
2

We estimate the last factor in (11).
Recalling (6), we have

1H(r /e 5 max(|ng|, Ing|) > 20761

(12)

wia

if A.(n) #0,r > 1.
Hence, with ¢ as above,

M) = Ae(n)-(1 = @) (277D %n1) 4+ A, (n).p(27 0D om).(1 = ) (2707 ny);

and thus

| S xmiemens|
<| S rmmimens| |50 - o T mens
+ “ > Ar(n)naf(n)e™= 1
<(| = -oe e

(13)

1

—30(2'%”1 (1- )2~ ng)en

1

H[ 2 Za-we P )
IR P bt B

®1 nz z2

> A (n)f(n)e™e
Since (1 — ¢)(2~~Y/en,) = 0 for |n;| < 2("~1)/¢, one easily checks that

T ia- et empemal g 3 2t <o
n1 Lil £>(r—1)/¢

wia

Similarly,
< g (=2,
Ly,

3 L0~ gy
ns 2

Thus (13) implies that
< 2—(1‘ 2)/e

Z/\ ema:
1

Substitution of (12), (14) in (11) gives
| 3 A(m)fm)en

(15) ~277

(14)

Z/\ (n)f(n)e'™®

Wl,l.

< g—(r=2)(1-a)/e
2/(2—s)

> A (n)f(n)e™=

Wil

Y amfmens|
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By (12), (15),

£.(2) > “ > Xo(n)f(n)e™* > Ar(n)f(n)ei™*

2+Z

r>1 2/(2—3s)

2 [|f =f flloa-s)
by (3).
This proves (1) and completes the proof of Theorem 1 when p = 1.

4 Square function inequalities

We present here some known inequalities used in the proof of Theorem 1 when
p> 1. Let {A;f};=1,2,.. be a Littlewood-Paley decomposition with A; f obtained
from a Fourier multiplier of the form ¢(277|n|) — (27 |n|) With0 < p < 1 a
smooth function satisfying ¢(t) = 1 for |t| < 1 and p(t) = 0 for |¢| > 2.

Recall the square-function inequality for 1 < ¢ < oo:

o f(Zm,-fF)l/z l(ZMjle)w

We also consider square-functions with respect to a martingale filtration. Denote
by {E,} the expectation operators with respect to a dyadic partition of [0, 1]¢ and

) Ajf = (B —Bjy)f

1)

< Ifllg < Clg)
q

q

the martingale differences.
We use the square-function inequality

, 00>¢g22,
q

3 I1£llq < CJ&“ ( Zl/ijflz)l/2

which is precise in terms of the behaviour of the constant for ¢ =+ oo (see [4] and
also the Appendix for a proof of (3)).

Remark 2. One should expect (3) also to hold if 8,» is replaced by A; above,
but we do not need this fact.

We do require the following inequality later on.
Let
p<q and s=d(l/p-1/q) 23

Then, for g > 2,

1/2
@ £l < C\/&[Z@k’HAkfllp)z] .
k
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Proof of (4). It follows from (3) that since ¢ > 2,

_ 1/2
) 1l < C\/é(ZIIAijI?,) ‘
7
Write

Ejf = ZAjAkf + Z&jAk.fy

k<j k>j

18 flla $ 325N Ak fllg + 3 27 Akl

k<j k>j

(6) <SR A Sy + D 207 (24| Ak flip)-

k<j k>j

Substitution of (6) in (5) gives

1/2
S - k)24k‘f<2k’||Akf||p)2)

k<j

i1 < cvaf (
¥ <,§(k - j)24<3‘-’=>8(2’“||Akfnp)2)1/2}

1/2
@ < Cﬁ(Z@’“nAkfnp)?) .
k

5 Proof of Theorem 1 when 1 < p < 2

Write
|f(z) = f)IP k(d+ /
AR S0 dady ~ ) 2k(@+ee) z+ h) — f(z - h)||Pdh
[ e amy e [ s = s g
P
1) > ) ok(@tre) / Y f(n)(sinn.h)e™=|| dh.
k>0 ]h|~2—k—10 ?

Following the argument in Section 3 (formula (10)), we get again for

p
).
wl.p

(2) S=d(1/p—1/q), l—-s=¢

3) ()2 (2_, > M(n)f(n)e™=

where the multipliers A, are defined as before.
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Cased=1
Define
fr= Y M) f(m)ene.

We make two estimates.
First write

fo= (Zmvmienn (3 Zene),

n
2r/e<|n|<2(r+1)/s

which implies

@ I frlle < Nfrllwis

Z l sinnzx

n
ar/ecng2(r+l)/e

/p'+1/9)7}

and, by estimate (10) in Section 2,

&) Ul S2EF frllwrs =272 fllwrs = 27 i ol
Estimate then

(6) 1£lla < D Mfella C D@7l frllwrs)-
Next apply inequality (4) of Section 4. Observe that
18cf1 < ST1AS,

where, by construction, there are, for fixed k, at most two nonvanishing terms.
Thus

D 1ARFIZ S D IARflI3.
Also, for fixed r,
- 1 _
® D@ NARL ) = 34 Ak fr s S 247"l
k r .

Substituting (7), (8) in (4) of Section 4 gives

2 1/2
< OVaTE | Z s’

1

O 17l S CVa| 1AL
k r

which is the second estimate.

]

89
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Interpolation between (6) and (9) thus implies
1/p
(10) Ille < C(/afe 3= [ 3@ frllwas)?] -

Recalling (3) and also (2) (which implies that 1 — ¢ = 1/p — 1/¢q < 1/p, hence
£ > 1— 1/p) we obtain

(an e.(1) 2 (1/a)"IfII3,
which gives the required inequality.

Cased > 1
We distinguish two cases.

Case A: 0 <1/p-1/dis not near 0.

Case B: 1/p—1/dis near 0.
Observe that case B may only happen for d = 2 and p near 2 (we assumed
1<p<2).

Case A.
Define ¢; by

(12) lzd(l/p—l/ql),

so that ¢ < ¢, and ¢; is bounded from above by assumption.
Thus we have the Sobolev inequality

(13) llglle; < Cligliwr.»-

Next, we make the obvious adjustment of the argument in Section 3, (11)-(15).
Thus Holder’s inequality gives

(14) W felle < NENETOIAA1IE,

with
1/g=(1-8)/q1 +6/p, henced=1-s=c¢by(2),(12).

Hence, by (13),
(15) I7rllq < Clifrllirisll f1I5

To estimate || f, ||, proceed as in (13) of Section 3. Thus

| fellw.e

Ly(T)

1 —(r— ing
150y 5 | 2 50 - o) eme

(16) <2700 £l ws.
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Substituting (16) in (15), we get

(17) ”fr“q 5 2~T"fr“W1:P-

Substituting (17) in (3) gives (since ¢ is bounded by case A hypothesis)

2 Tz~ 3 (siase)”

7 q

1/2yp
2| ()
" 1/2
(18) > H( ZlAjflz)
J

(the second inequality requires distinction of the cases ¢ > 2 and p < ¢ < 2).
Now (18) gives the required inequality.

4

q

P
~ 17113
q

Case B.
Thus d = 2 and p is near 2.
Going back to (3) and applying (1), (4) of Section 4, we obtain

e.()2 Y @ frllwes)?
) N\ P/2
2 (S Siasie)
p/2
2 S5l
(= )

(19 2P| f)IE,
where
(20) g P = (1/p—s/2)P/* ~ (2 - ps)P,

which again gives the required inequality.

6 Proof of Theorem 1 when p > 2

From (3) in Section 5, we now get the minoration

(D e(1) 2 Y2718 1115)7,
i

which we use to majorize | f||,.
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We already have inequality (4) of Section 5; thus

‘ 1/2
@ 111 < ova( Ty

J

Our aim is to prove that

3

_ 1/p
@ £l < Cae( S,y

which will give the required inequality together with (1).

Using interpolation for 2 < p < d/s, it clearly suffices to establish (3) for large
values of q. To prove (3), we assume 2 < p < 4 (other cases may be treated by
adaption of the argument presented below). Assume further (taking the previous
comment into account) that

C)) q=2p.
Again by interpolation, (3) will follow from (2) and the inequality

. . 1/4
) 1fll, < Cad (Z(WIIAJIIP)“) -
J

We use the notation from Section 4 and start from the martingale square function
inequality (3) in Section 4; thus

©) 111, < ova| (S1E11) v

Write

q

181 < Y1886 = 3 1A Ajim S
k

meZ
(putting A, =0 for k < 0).

Writing
1/2
©) “(Zlﬁjﬂz)‘” <y (ZlﬁjAj+mf|2) :
J 9 meZ j q

we estimate each summand.

Fix m. Write

5 1/24 B 2
’(Z|A1Aj+mf|2) = N(Z|AjAj+mf|2)
J q J q/4

® <2 3 118585 4m 18585 4m S Pllasa

11<d2
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and
” |511Aj1+mf|2 IzjzAj2+mf|2”q/4
= [/ |8lejl+mf|q/2']Ej1 [IzjzAjz-melq/z]]

~ -~ 2 2
<A Ay FI2 | (B 185,855 4m F197]) /q“q
o _ ~ ~ 1
< 44—/ DA Aj 4 117 || (B [1A72 D52 +m fIP]) /7|2
)] < 432=3)(/p=2/a) g /2= DAy Ay o 112 1A g3 Ayt FII3-

4/q

Assume m <0,

Estimate
10$) 185 85 1mflla S 2™M|Aj4mfllg < 2m2d@tmA/P=VONA; 4o £l
(11 185, 85+mfllp S 2™ 1B +m S llp-

Substitution of (10), (11) in (9) gives

(12)
4(1-d(3-3)ym+m 4—‘.§(J'z—1'1)[2d(f;—i)(j1+m)"Ajl+mf”p]2 [2d(;1;—f;)(jz+m)”Ajz_l_mf“p]?

where
d(1/p—1/q)=s.
Summing (12) for j; < j; and applying Cauchy-Schwarz implies for m < 0

(®) < 4‘2"”"(24‘5‘) [Z(WIIAijIp)“]

£0
(13) < 4‘2"’"‘q[Z(WIIAMIP)“]~
J
Assume next m > 0.
Estimate
185, Ajy4m fllg S 241 VP DN A 4 fllp
and

(9) < 4402~ G=D 1691 G| A4 fI2 | Ajy4m £
(14) < 16™e 4~ =T |20 A L L f2 22 A L 2.

Summing over j; < j, implies that for m > 0,

1s) ®) 16“'"’q[2(2”'IIAjfllp)“]-
3
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Summing (13), (15) in m implies that

D<oy o) ‘/4[2@% ]

m>0

1/4
16) < ql"‘[Z(?’jHAjfllp)“] .

J
To bound |f|l;, apply (6), which introduces an additional ¢/2-factor. This
establishes (5) and completes the argument and the proof of Theorem 1.

7 Proof of Theorem 2

We make use of the following two lemmas

Lemma 2. Let I C R be an interval and let + : I — 7 be any measurable
function. Then there exists k € Z such that

H{z € Li(x) # kH < 2(0* //I‘w—l(i_—;ﬁ(y?)'lidxdyy/e

for all € € (0,1/2), where C* is the absolute constant in Corollary 1 (inequality
(10) in Section 1).

Proof of Lemma 2. After scaling and shifting, we may assume that | =
(—1,41). Foreach k € Z, set

A ={z € I:9y(z) < k}.

Note that A; is nondecreasing, limg_, o [Ax| = 0, and limy_, ;o |[Ak| = 2. Thus,
there exists k£ € Z such that

) |Akl €1 and |Ag4| > 1.

Applying Corollary 1 with A = A, and with A = A1, we find (using (1))

da:dy 1/e
) A < |A %S(C*e//_ )
PHESVATEN o Jon T
and
d:z:dy 1/e
® el < el el < (0% [ )
IAk+1] < Akt [Ara] A Jotry, |2 —yPPe

On the other hand,

|¥(z) —¥(y)| >1 forae.z€ Ag, y€ A
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and
lW(z) —¥(y)| >1 forae. .z € Axy1, ¥ € “Aiyr.

Therefore,
Hz € I ¢(z) # k} = |Ax| + |Ar 41|
_ 1/e
< 2(0*5 / dedy) _
1Jr

=~y

Lemma 3. Ifa > 0,a < b< z, and A C (a,b) is measurable, then

b—|A|
/ dy > / dy :
(a,b)\ A (‘T - y)a a (.’13 - y)a

similarly, if £ < a < b, then

foni 2572 Lo
— > .
(a4 (y— ) atja] (¥ —z)*

The proof of Lemma 3 is elementary and left to the reader.

Proof of Theorem 2. Let ¢, : @ = (—1,+1) — R be any measurable function
such that u, = e'¥c. We have to prove that for all ¢ < 1/2,

“) “'we”H(l—:)/?(Q) > ce™1/?

for some absolute constant ¢ to be determined.
We argue by contradiction and assume that for some ¢ < 1/2,

©) ”"/’e”H(l—e)N(Q) < 776_1/2.
We reach a contradiction if 7 is less than some absolute constant. Set
1
1/) = g(d)e - Soi)a

so that ¢ : Q — Z; recall that u, = e*#< and the function ¢, is defined by

0 for —1<z<0,
e(z) =< 2mz/§ for0 <z <,
2T ford <z <1,
where § = e~1/¢,

A straightforward computation (using the fact that ¢ takes values in Z) shows
that

© [Y() — ¥(¥)| < I¥e(z) - ¥e(y)| forae. z,y € (-1,26/3)
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and

) [¥(2) — Y(y)| < [Ye(z) — Ye(v)| forae. z,y € (6/3,1).

Applying Lemma 2 with I = (-1,2§/3) and I = (§/3, 1), together with (5), (7) and
(8) yields the existence of ¢, m € Z such that

[z € (~1,26/3);9(z) # &}| < 2(C*9°)"/*

and
H{z € (z € §/3,1);9(x) # m}| < 2(C™n)V/e.

We choose 7 in such a way that

4(C*n*)V/e < §/3 fore < 1/2,
for example,
(8 n? < 1/4eC*.

It follows that £ = m. Without loss of generality (after adding a constant to v.),
we may assume that

® L=m=0.

Therefore,

(10) Ye(z) = pe(z)  forz € [(~1,0\A] U[(5, 1)\B],
where

A = {z € (-1,0);9(z) # 0}

and

B = {z € (,1);9(z) # 0},
with
(11) |A| < 6/6,|B| < é/6.

From (11) and the definition of ¢., we have

[ /welx y;ﬁe(sy lte(z) = Y@ / /welz yr;e_(y)l "

— 2
>e / do lee(z) — 2 W) ,
(—1,00\ A4 (6,1)\B |z —y|
2
> e/ dr ﬁr_dg:
(-ona Jeans Iz -yl
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Applying Lemma 3 and (5), we find

|'¢/)e | 14l 47('2dy
poe [ [ SO [ [y
|-73 yl"’ € s+B| lT—y*~*

-48/6 2
Zs/ dz/ ﬂ—di—=41r2(1—e‘1)+o(1)
+8/6 |

z —yl>e

as ¢ = 0. We obtain a contradiction for an appropriate choice of 7.

Appendix

Proof of the square function inequality
Let { F.}n=0,,2,... be refining finite partitions such that

#fﬂ = Kna
|Q|= K" if Q is an F,-atom.

dIfQ=1[0,1)¢, K =24
Denote E, the F,-expectation

Anf=Epnf—Enaf (we used the notation A,, f in Section 4),
1/2
= ( > lAnf |2) (the square function),
f < f* =sup|E,f| (the maximal function).
a.e.

Proposition 1.

M mes ({|f] > MSfll}) <€ (A21),
where ¢ = ¢(K) > 0 is a constant.

Proposition 2 (good-) inequality).

—¢:/:2

2) mes({f*>2)Sf <e\supE,_[|Anf]] <eA}) <e mes ({f* > A})
(0<e<l1).
Proposition 3.
3) If*lle < CvallSflly forg=2.

We follow essentially [4].
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Proof of Proposition 1. One verifies that there is a constant A = A(K) such
that if o is F,,-measurable and E,,_; ¢ = 0, then

) E,_[e* 4] < 1.
Hence
) E,_1[efnf 4% < 1

and, writing S, f = (¥, <., |Amf|2)1/2, we have
/ oFn = AShI)? / B f-AlSn P, [eBn=AWBRS)]

< /er,;"_l_f—A(Sn_J)2 (by (5))
<1

Thus
(6) / o ~AGH? < 1.

Assume ||Sf|| < 1. Applying (6) totf (¢ > 0 a parameter), we get

/etf < eAtz, mes({f > A}) < eAtz_”\,
so for appropriate choice of ¢
mes({f > \}) < e"3/44,

This proves (1).

Proof of Propesition 2. This is a standard stopping time argument.

Consider a collection of maximal atoms {Q,} C |JF, such that if Q, is an
Fn-atom, then |E, f| > X on Q,. Thus Q, N Qs = @ for a # B. Fix a. From the
maximality,

@) [Eroifl| <A onQ,.
Therefore,

{Ff*>2)\8f <eAsupEq_1{|Anf]] < (1/K)eA}N Qs C
{(f=EBnf)* > —)\Sf < eXsupEm_1[|Amfl] < (1/K)eA} N Qq = (8).
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For m > n, denote y,,, the indicator function of the set

Qan {(:z; lAefF)m < eA} 0 {Encsllansl < %
N () {[Eef —Enf] < (1-€)A} =(9).

n<é<m
Thus
Xm = Em-1 Xm
and
9= XmOmf
m>n

is an {F,, : m > n}-martingale on Q,,.
From the definition of y,,, we have clearly

1/2
(10) S(g) = ( v X,,,|A,,.f|2) <ex+er<el

m>n

and
lg] > (1 —€)X  on the set (8).

From Proposition 1 and (10),

(1 mes({z eQq; |g] > (1 — €)A}) < ™% |Qul
hence
(12) mes(8) < e~/ |Qal-

Summing (12) over « implies
mes({f* > 2)\,Sf < e\,;supEp_1[|Anf|] < (1/K)eA})
<" 3 |Qul < e/ mes(f* > A,
which is (2).
Proof of Proposition 3.
1771 =q [ A imes({s* > Ap)ar
= 2"q/,\"‘lmes({f‘ > 22})dA

a3 <29 / A1 mes({Sf > eA}) + mes({sup Bn_1[|An ] > (¢/ K)A})
+ e/ mes({f* > A})]
< (2/e)*(IISfl3 + K| sup En—1 [|An fI]IIT) + 2"63—°/€2||f‘||3-
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Take 1/e ~ /g, so that the last term in (13) is at most || f*||2. Thus

(14) 1/ lle < Cva(lISfllq + Il sup En-1[|Anfl]llq)-

Also,

1/q
0B s (1801l < (3 18108115

1/q
< (Z IIAanlg)
(15) <1151l

Proposition 3 follows from (14) and (15).

Added in proof

An alternative, more elementary, proof of Theorem 1 was given by V. Mazya
and T. Shaposhnikova, On the Bourgain, Brezis and Mironescu theorem concerning
limiting embeddings of fractional Sobolev spaces, J. Funct. Anal. (to appear).
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