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COMPOSITION IN FRACTIONAL SOBOLEV SPACES

HAIM BREZIS(1)(2) AND PETRU MIRONESCU(3)

1. Introduction. A classical result about composition in Sobolev spaces asserts
that if u ∈ W k,p(Ω)∩L∞(Ω) and Φ ∈ Ck(R), then Φ◦u ∈ W k,p(Ω). Here Ω denotes
a smooth bounded domain in RN , k ≥ 1 is an integer and 1 ≤ p < ∞. This result
was first proved in [13] with the help of the Gagliardo-Nirenberg inequality [14]. In
particular if u ∈ W k,p(Ω) with kp > N and Φ ∈ Ck(R) then Φ ◦ u ∈ W k,p since
W k,p ⊂ L∞ by the Sobolev embedding theorem. When kp = N the situation is
more delicate since W k,p is not contained in L∞. However the following result still
holds (see [2],[3])

Theorem 1. Assume u ∈ W k,p(Ω) where k ≥ 1 is an integer, 1 ≤ p < ∞, and

kp = N. (1)

Let Φ ∈ Ck(R) with
DjΦ ∈ L∞(R) ∀j ≤ k. (2)

Then
Φ ◦ u ∈ W k,p(Ω)

The proof is based on the following

Lemma 1. Assume u ∈ W k,p(Ω) ∩ W 1,kp(Ω) where k ≥ 1 is an integer and
1 ≤ p < ∞. Assume Φ ∈ Ck(R) satisfies (2). Then

Φ ◦ u ∈ W k,p(Ω).

Proof of Theorem 1. Since u ∈ W k,p we have

∇u ∈ W k−1,p ⊂ Lq

by the Sobolev embedding with

1
q

=
1
p
− k − 1

N
.
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Applying assumption (1) we find q = N = kp and thus u ∈ W 1,kp. We deduce from
Lemma 1 that Φ ◦ u ∈ W k,p.

Proof of Lemma 1. Note that if u ∈ W k,p ∩ L∞ with k ≥ 1 integer and 1 ≤ p < ∞
then u ∈ W 1,kp by the Gagliardo - Nirenberg inequality [14]. Thus, Lemma 1 is a
generalization of the standard result about composition. In fact, it is proved exactly
in the same way as in the standard case (when u ∈ W k,p ∩ L∞). When k = 2 the
conclusion is trivial.

Assume, for example that, k = 3, then

W 3,p ∩W 1,3p ⊂ W 2,3p/2

by the Gagliardo - Nirenberg inequality. Then

D3(Φ ◦ u) = Φ′(u)D3u + 3Φ′′(u)D2uDu + Φ′′′(u)(Du)3,

and thus Φ ◦ u ∈ W 3,p since
∫
|D2u|p|Du|p ≤ ( ∫

|D2u|3p/2)2/3
( ∫

|Du|3p
)1/3

≤ C‖u‖p/2
W 3,p‖u‖3p/2

W 1,3p .

A simular argument holds for any k ≥ 4.

Starting in the mid-60’s a number of authors considered composition in various
classes of “Sobolev spaces” W s,p, where s > 0 is a real number and 1 ≤ p < ∞. The
most commonly used are the Bessel potential spaces Ls,p(RN ) = {f = Gs ∗ g; g ∈
Lp(RN )} where Ĝs = (1+|ξ|2)−s/2 and the Besov spaces Bs,p

p (RN ) (who’s definition
is recalled below when s is not an integer). It is well-known (see e.g. [1],[19] and
[20]) that if k is an integer, Lk,p coincides with the standard Sobolev space W k,p;
also if p = 2, the Bessel potential Ls,2 and the Besov spaces Bs,2

2 coincide for every
s non-integer and they are usually denoted by Hs. When p 6= 2 the spaces Ls,p and
Bs,p

p are distinct.

The first result about composition in fractional Sobolev spaces seems to be
due to Mizohata [12] for Hs,s > N/2. In 1970 Peetre [15] considered Bs,p

p ∩ L∞

using interpolation techniques; a very simple direct argument for the same class,
Bs,p

p ∩ L∞, was given by M. Escobedo [10] (see the proof of Lemma 2 below).

Starting in 1980 techniques of dyadic analysis and Littlewood-Paley decom-
position à la Bony [5] were introduced. For example, Y. Meyer [11] considered
composition in Ls,p for sp > N ; see also [16],[4],[9] for Hs with s > N/2 or for
Hs ∩ L∞, any s > 0. We refer to [17],[6],[7],[18] and their bibliographies for other
directions of research concerning composition in Sobolev spaces.

In what follow we denote by W s,p(Ω) the restriction of Bs,p
p (RN ) to Ω when s

is not an integer. Our main result is the following

Theorem 2. Assume u ∈ W s,p(Ω) where s > 1 is a real number, 1 < p < ∞,
and

sp = N. (3)

Let Φ ∈ Ck(R), where k = [s] + 1, be such that

DjΦ ∈ L∞(R) ∀j ≤ k. (4)
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Then
Φ ◦ u ∈ W s,p(Ω).

The proof of Theorem 2 relies on a variant of Lemma 1 for fractional Sobolev
spaces.

Lemma 2. Let u ∈ W s,p(Ω), where s > 1 is a real number and 1 < p < ∞.
Assume, in addition, that u ∈ Wσ,q for some σ ∈ (0, 1) with

q = sp/σ. (5)

Let Φ ∈ Ck(R), where k = [s] + 1, be such that (4) holds. Then

Φ ◦ u ∈ W s,p

Proof of Theorem 2. By the Sobolev embedding theorem we have

W s,p ⊂ W r,q

with r < s and
1
q

=
1
p
− (s− r)

N
.

In view of assumption (3) we find

q = N/r.

In particular,
u ∈ Wσ,q

for all σ ∈ (0, 1) with

q =
N

σ
=

sp

σ
.

Thus we may apply Lemma 2 and conclude that Φ ◦ u ∈ W s,p.

Remark 1. Theorem 2 is known to be true when the Sobolev spaces W s,p are
replaced by the Bessel potential spaces Ls,p with sp = N ; see D. Adams and M.
Frazier [3]. Even though the two results are closely related it does not seem possible
to deduce one from the other. Their argument relies on a variant of Lemma 2 for
Bessel potential spaces:

Let u ∈ Ls,p ∩L1,sp where s > 1 is a real number and 1 < p < ∞. Let Φ be as
in Lemma 2. Then Φ ◦ u ∈ Ls,p.

Remark 2. The assumption in Lemma 2, u ∈ W s,p ∩ Wσ,q, with q = sp/σ for
some σ ∈ (0, 1), is weaker than the assumption u ∈ W s,p ∩ L∞ but it is stronger
than the assumption u ∈ W 1,sp; this is a consequence of Gagliardo - Nirenberg
type inequalities (see e.g. the proof of Lemma D.1 in the Appendix D of [8]). It is
therefore natural to raise the following:

Open Problem. Is the conclusion of Lemma 2 valid if one assumes only u ∈
W s,p ∩W 1,sp where s > 1 is a (non-integer) real number?

Before giving the proof of Lemma 2 we recall some properties of W s,p when s
is not an integer.
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When 0 < σ < 1 and 1 < p < ∞ the standard definition of Wσ,p is

Wσ,p(Ω) = {f ∈ Lp(Ω);
∫ ∫ |f(x)− f(y)|p

|x− y|N+σp
dxdy < ∞}.

If s > 1 is not an integer write s = [s] + σ where [s] denotes the integer part of s
and 0 < σ < 1. Then

W s,p(Ω) = {f ∈ W [s],p(Ω), Dαf ∈ Wσ,p for |α| = [s]}.

There is a very useful characterization of W s,p in terms of finite differences (see
Triebel [20], p.110). Here it is more convenient to work with functions defined on
all of RN and to consider their restrictions to Ω. Set

(δhu)(x) = u(x + h)− u(x), h ∈ RN ,

so that
(δ2

hu)(x) = u(x + 2h)− 2u(x + h) + u(x), etc...

Given s > 1 not integer, fix any integer M > s. Then

W s,p = {f ∈ Lp;
∫ ∫ |δM

h f(x)|p
|h|N+sp

dxdh < ∞}.

Proof of Lemma 2. It suffices to consider the case where s is not an integer. For
simplicity we treat just the case where 1 < s < 2. The same argument extends to
general s > 2, s noninteger, using the same type of computations as in Escobedo
[10].

The key observation is that δ2
h(Φ◦u) can be expressed in terms of δ2

hu and δhu.
This is the purpose of our next computation.

Set

X = u(x + 2h)

Y = u(x + h)

Z = u(x).

Since Φ′′ ∈ L∞(R) we have

Φ(X)− Φ(Y ) = Φ′(Y )(X − Y ) + 0(|X − Y |2) (6)

and since Φ′ ∈ L∞(R) we also have

Φ(X)− Φ(Y ) = Φ′(Y )(X − Y ) + 0(|X − Y |). (7)

Combining (6) and (7) we find

Φ(X)− Φ(Y ) = Φ′(Y )(X − Y ) + 0(|X − Y |a)

for any 1 ≤ a ≤ 2 ( we will choose a specific value of a later) Similarly

Φ(Z)− Φ(Y ) = Φ′(Y )(Z − Y ) + 0(|Z − Y |a)
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Since
δ2
h(Φ ◦ u)(x) = (Φ(X)− Φ(Y )) + (Φ(Z)− Φ(Y )),

one finds

|δ2
h(Φ ◦ u)(x)| ≤ C(|δ2

hu(x)|+ |δhu(x + h)|a + |δhu(x)|a). (8)

This yields

∫ ∫ |δ2
h(Φ ◦ u)(x)|p
|h|N+sp

dxdh ≤ C

∫ ∫ |δ2
hu(x)|p
|h|N+sp

dxdh + C

∫ ∫ |δhu(x)|ap

|h|N+sp
dxdh. (9)

The first integral on the right-hand side of (9) is finite since u ∈ W s,p. To handle
the second integral we argue as follows. From the assumption u ∈ W s,p∩Wσ,q with
σ ∈ (0, 1) and q given by (5) we know that

∫ ∫ |δ2
hu(x)|p
|h|N+sp

dxdh < ∞ and
∫ ∫ |δ2

hu(x)|q
|h|N+sp

dxdh < ∞. (10)

From (10) and Hölder’s inequality we derive that

∫ ∫ |δ2
hu(x)|r
|h|N+sp

dxdh < ∞ (11)

for all r ∈ [p, q], i.e., u ∈ W τ,r with τ = sp/r. We now choose

a = min{2, s/σ}, so that a ∈ [1, 2]

and r = ap ∈ [p, q]. It follows that

∫ ∫ |δhu(x)|ap

|h|N+sp
dxdh < ∞,

which is the desired in equality.

Remark 3. There could be another natural proof of Theorem 2 by induction on
[s]. One might attempt to prove that

D(Φ ◦ u) = Φ′(u)Du ∈ W s−1,p.

Note that u ∈ W (s−1),N/(s−1) and thus (by induction) we would have Φ′(u) ∈
W (s−1),N/(s−1). On the other hand Du ∈ W s−1,p. In order to conclude we need a
lemma about products, but we are not aware of any such tool.

Remark 4. When s (or equivalently p) is a rational number, and Φ ∈ C∞

with DjΦ ∈ L∞ ∀j, there is a simple proof of Theorem 2 based on trace theory
and Theorem 1. Assume for simplicity that Ω = RN . Suppose that s is not
an integer, but that s1 = s + 1/p is an integer. Then u is the trace of some
function u1 ∈ W s1,p(RN+1). Then s1p = N + 1 and by Theorem 1 we deduce
that Φ ◦ u1 ∈ W s1,p(RN+1). Taking traces we find Φ ◦ u ∈ W s,p(RN ). If s1 is not
an integer we keep extending u1 to higher dimensions and stop at the first integer
k such that sk = s + k/p is an integer ( this is possible since p is rational and
s + k/p = (N + k)/p becomes an integer for some integer k). We have an extension
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uk ∈ W sk,p(RN+k) of u. Then Φ ◦ uk ∈ W sk,p(RN+k) by Theorem 1. Taking back
traces yields u ∈ W s,p.

References

1. R. Adams, Sobolev Spaces, Acad. Press, 1975.
2. D.R. Adams, On the existence of capacitary strong type estimates in Rn, Ark. Mat., 14,

(1976), 125-140.
3. D.R. Adams and M. Frazier, Composition operators on potential spaces, Proc. Amer. Math.

Soc., 114, (1992), 155-165.
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partielles nonlinéaires, Ann. Sc. Ec. Norm Sup. 14, (1981), 209-246.
6. G. Bourdaud, Le calcul fonctionnel dans les espaces de Sobolev, Invent. Math., 104, (1991),

435-446.
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