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THE FASCINATING HOMOTOPY STRUCTURE OF SOBOLEV SPACES

ABSTRACT. — We discuss recent developments in the study of the homotopy classes for the Sobolev
spaces W 1, p (M ; N). In particular, we report on the work of H. Brezis - Y. Li [5] and F.B. Hang - F.H.
Lin [9].
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0. INTRODUCTION

Let M and N be metric spaces with M compact. Standard homotopy theory deals
with the question whether two given continuous maps, f , g�C 0 (M ; N) can be homo-
topied, i.e., whether there exists a continuous deformation from f to g, that is, a path
h(t)�C( [0 , 1]; C 0 (M ; N) ) such that h(0)4 f and h(1)4g. Here the space
C 0 (M ; N) is equipped with the standard metric

d( f1 , f2 )4Max
x�M

dN ( f1 (x), f2 (x) ) .

In other words, the objective is to determine whether C 0 (M ; N) is path-connected (or
equivalently, connected). If not, one then hopes to give a complete classification of the
components of C 0 (M ; N). This amounts to find all the topological invariants. If f and g
belong to the same component, i.e., are homotopic, we will write

fAg in C 0 .

For example, when M4N4S n, a celebrated result of H. Hopf is

THEOREM 1. Let f , g�C 0 (S n ; S n ), then

[ fAg in C 0 ] ` deg ( f )4deg (g) ,

where deg denotes the standard topological (Brouwer) degree.

In what follows we assume that M and N have more structure; for example that M
and N are smooth connected, compact, Riemannian manifolds with ¯N4¯ (M with or
without boundary). We have in mind simple manifolds such as spheres, products of
spheres, domains in RN - for example M could be a solid torus in R3 , M4S 13B
where B is the unit disc in R2, or more generally M4S n3B where B is the unit ball in
Rk, etc.

In this case, it makes sense to consider the spaces C 1 (M ; N), C 2 (M ; N), R
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R , C j (M ; N), R, equipped with their own metric

dj ( f1 , f2 )4 !
i40

j

!
NaNG i

Max
x�M

d(D a f1 (x), D a f2 (x) ) .

On C j (M ; N) we have a natural equivalence relation, fAg in C j, if there exists a path
h�C( [0 , 1]; C j (M ; N) ) such that h(0)4 f and h(1)4g. In other words, fAg in C j

if and only if f and g belong to the same component of C j.
It turns out that such a notion has no interest because of the following two basic

lemmas:

LEMMA 1. Let f , g�C j (M ; N); then

[ fAg in C j ] ` [ fAg in C 0 ] .

LEMMA 2. Given any f�C 0 (M ; N) there exists a path h(t)�C( [0 , 1]; C 0 (M ; N) )
such that h(0)4 f and h(t)�C j (M ; N), (j , (tD0.

The proofs of Lemma 1 and Lemma 2 are based on regularization by convolution.
Note that the approximants do not belong, in general, to the target manifold N. How-
ever, the continuity of the maps implies the uniform convergence of the approximants.
One may then use the projection onto N which is well-defined (and smooth) in some
neighborhood of N.

As a consequence of Lemmas 1 and 2 we may now assert:

COROLLARY 1. For every j , any component of C j (M ; N) contains one and exactly
one component of C 11 (M ; N).

In other words, the components of C j (M ; N) behave like the Russian «ma-
trioshkas» dolls. We may adopt two points of view. As j increases, the space C j (M ; N)
becomes smaller. But the components of C j shrink without changing their shape. A
component of C j does not «split into pieces» when passing to C 11, also, it does not
«disappear». As j decreases, the space C j (M ; N) becomes larger. But two components
of C j never coalesce into one component of C 21 and no «new baby» appears. We are
going to see that this simple «self-reproducing» effect is lost when we replace the scale
of C j spaces by a scale of Sobolev spaces. They have a much richer structure which is
not yet fully understood.

The motivation for studying homotopy classes in Sobolev spaces is two-fold:

a) The solutions of some nonlinear PDE’s admit sometimes singularities which
correspond to some observations in the natural world (defects in liquid crystals, vor-
tices in superfluids and superconductors, etc.). It is interesting to study the effect of
continuous deformations under Sobolev norms, e.g. the energy norm.

b) The existence of multiple solutions in variational problems is often established
via topological arguments. If the underlying function space admits several connected
components one may hope to find a critical point in each component.
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As we are going to see, the connected components of Sobolev spaces may be quite
different from the classical ones. For example H 1(S 2 ; S 2) has infinitely many compo-
nents classified by a degree (as for C 0(S 2 ; S 2) ); however H 1(S 3 ; S 3) is path-connected.

Let us recall the definition of the Sobolev space W 1, p (M ; N). Let 1GpEQ be a
real number. The definition of W 1, p (M ; R) is standard, as well as W 1, p (M ; Rl ); they
are equipped with the norm

V f VW 1, p4V f VL p1V˜f VL p .

Let N%Rl be an isometric embedding. By definition

W 1, p (M ; N)4] f�W 1, p (M ; Rl ); f (x)�N a.e.( ;

it is equipped with the metric

d( f1 , f2 )4V f12 f2 VW 1, p .

When p42 we also use the notation

H 1 (M ; N)4W 1, 2 (M ; N).

As in the previous situation of the spaces C j (M ; N), we also have a scale of spaces,
which are indexed by a real parameter 1GpEQ, and which decrease as p increase,
i.e.,

W 1, p (M ; N)%W 1, q (M ; N) if pDq .

WARNING. There is an alternative definition of Sobolev maps between manifolds.
Set

W×1, p (M ; N)4C Q (M ; N)W 1, p
.

Clearly

W×1, p (M ; N)%W 1, p (M ; N) ,

but, in general, W×1, p
cW 1, p (see [11, 1, 9]). The study of W×1, p (M ; N) from the point

of view of homotopy classes is widely open.

DEFINITION. We say that two maps f , g�W 1, p (M ; N) are equivalent in
W 1, p (M ; N), and we write

fAg in W 1, p (M ; N)

if there exists a homotopy connecting f to g, i.e., h�C( [0 , 1]; W 1, p (M ; N) ) with
h(0)4 f and h(1)4g.

The equivalence classes for the equivalence relation A are precisely the homotopy
classes of W 1, p, i.e., the path-connected components of W 1, p. As a metric space
W 1, p (M ; N) also admits connected components. In principle, the two notions could
de distinct. In fact, they coincide because of the following nontrivial result, which is
implicit in [9]:

THEOREM 2. Given f�W 1, p (M ; N) there exists eD0 (depending on f) such

[ g�W 1, p (M ; N) and Vg2 f VW 1, pEe] ¨ [ gA f in W 1, p (M ; N) ] .
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1. THE HOMOTOPY CLASSES OF W 1, p (S n , S n )

It is enlightening to start with the study of Sobolev classes in the simple case
M4N4S n. The study of homotopy classes of W 1, p (S n , S n ) was initiated in [4] when
p42 and n42. The motivation there came from a conjecture of Giaquinta and
Hildebrandt [8] concerning the existence of multiple solutions for an equation arising
in the theory of harmonic maps.

It is natural to distinguish 3 cases:

Case 1: pDn,

Case 2: p4n,

Case 3: pEn.

Case 1: pDn. This case is the simplest case because of the Sobolev embed-
ding

W 1, p%C 0 .
The situation here is very similar to the one we encountered for the C j-classes.

Namely we have

LEMMA 18. Let f , g�W 1, p (S n , S n ). Then

[ fAg in W 1, p ] ` [ fAg in C 0 ] .

In particular, fAg in W 1, p if and only if deg( f )4deg(g).

LEMMA 28. Given any integer k�Z there exists f�C Q (S n , S n ) such that
deg ( f )4k.

As a consequence of Lemma 18 and 28 we may now assert:

COROLLARY 18. For any pDn , every component of C 0 (S n ; S n ) contains one and ex-
actly one component of W 1, p (S n ; S n ).

In other words, as p increases from n to Q, the space W 1, p (S n , S n ) decreases. Each
component «shrinks» without «changing its shape». We encounter here the same
«matrioshka» effect as for C j.

Case 2: p4n. This case is more delicate because W 1, n (S n ; S n ) is not contained in
C 0 (S n ; S n ). However, we were still able (in [4]) to define a degree via the
formula;

deg ( f )4 1
NS nN

�
S n

det (˜f ) .(1)

Using a density result of Schoen and Uhlenbeck [11] one can prove that the real num-
ber defined by the integral in (1) belongs to Z and that it coincides with the standard
topological degree when f�C 0OW 1, p.
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We also have

LEMMA 19. Assume f , g�W 1, n (S n ; S n ). Then

[ fAg in W 1, n ] ` [deg ( f )4deg (g) ] .

In particular, we find that W 1, n (S n , S n ) has infinitely many components which
are classified by this new degree.

Later on, in [7], we took a slightly different view point and defined a degree with-
out a formula for the general class of VMO (=vanishing mean oscillation) maps. We
observe that if f�VMO (S n ; S n ) then

fe4r e ˜f�C Q (S n ; Rn11 )

and

Nfe (x)NK1 uniformly on S n

(despite the fact that fe (x) does not converge uniformly to f (x), in general).
Then

fe(x)4 fe (x)ONfe (x)N

is well-defined from S n into S n for e sufficiently small, eEe 0, and fe is smooth. Hence
deg ( fe) is defined and constant for 0EeEe 0 (by the standard invariance of degree
under homotopy). We define

deg ( f )4deg ( fe )(0EeEe 0 ) .(2)

Note that C 0% VMO and then, for f�C 0 (S n ; S n ), the VMO-degree coincides with
the standard Brouwer degree. One can also prove (see [7]) that

W 1, p (M)% VMO (M) when p4dim M

(in fact, this is true in all the limiting cases of the Sobolev embedding, including the
fractional Sobolev spaces). As a result deg ( f ) is well-defined for f�W 1, n (S n ; S n ) via
(2) and this degree coincides with the one given by formula (2).

Case 3: 1GpEn. Here the situation is totally different. We have

THEOREM 3. For any 1GpEn , the space W 1, p (S n ; S n ) is path-connected.

A weaker form of Theorem 3 was first noticed in [7]. We observed that no reason-
able degree theory exists in W 1, p (S n , S n ) for pEn. Indeed

IdA const in W 1, p (S n , S n ), pEn .(3)

To prove (3), fix any a�Rn11 with NaN42 and set

h(x , t)4 x2 ta
Nx2 taN

, x�S n , t� [0 , 1] .

Clearly

h�C Q (S n3 ( [0 , 1] 0]1/2(); S n )
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and an easy calculation shows that

h(Q , t)�C( [0 , 1]; W 1, p (S n ; S n ) ), (pEn .

Moreover

h(0)4 Id , deg (h(1) )40

(since h(1) is not surjective). Hence h(1) is homotopic in C 0 (and thus in C 1, by Lem-
ma 1) to a constant. This proves (3). The same argument shows that any map
f�C 1 (S n ; S n ) is homotopic in W 1, p (S n ; S n ), (pEn, to a constant. (It suffices to
choose any a�Rn11 with NaN42, a/2 a regular value of f and h(x , t)4 ( f (x)2
2ta)ONf (x)2 taN). The general form of Theorem 3 as stated above is due to Brezis and
Li [5].

2. TOPOLOGY SOMETIMES «SURVIVES» BELOW THE SOBOLEV THRESHOLD p4dim M

In view of the analysis of the example W 1, p (S n ; S n ), one might be inclined to
think that, since functions in W 1, p (M ; N) are not continuous when pGdim M, and
not even VMO when pEdim M, there are no homotopy classes below the Sobolev
threshold p4dim M, i.e., W 1, p (M ; N) is path-connected for pEdim M. This is in-
deed true when dim M42 (see Theorem 7 below). However, this turns out to be
wrong when dim MF3. Such a phenomenon was first pointed out in an example by
Rubinstein and Sternberg [10] which broke a «psychological barrier».

THEOREM 4. Let M4V4 a solid torus in R3 , i.e., M4S 13B, where B is the unit
disc in R2. Let N4S 1. Then, every map f in H 1 (M ; N) admits a well-defined degree (in
Z). Moreover this degree is stable under H 1-convergence.

More precisely, given f�H 1 (M ; N), write

f4 f (x , l) : S 13BKS 1 .

Then, for a.e. l�B, the map

x�S 1 O f (x , l)�S 1

belongs to H 1 (S 1 ; S 1 ); thus it is continuous and we set

W(l)4deg ( f (Q , l) ), for a.e. l�B .

The main and nontrivial assertion is that W(l) is a fixed integer, independent of l a.e.
in B. This integer is called the degree of f.

As a consequence, we see that H 1 (M ; N) admits infinitely many components even
though, here, p42Edim M43.

Subsequently, we generalized Theorem 4 and gave a more direct proof (the argu-
ment of Rubinstein and Sternberg relied on earlier results of Bethuel [1] and White
[12]):

THEOREM 5 [6]. Let M4V4S n3L where nF1 and L is any open connected set
in Rk , kF1. Let N4S n. Then every map f�W 1, n11 (M ; N) has a well-defined degree.
Moreover this degree is stable under W 1, n11 convergence.
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More precisely for a.e. l�L, the map

x�S n O f (x , l)�S n

belongs to W 1, n11 (S n ; S n ); thus it is continuous by the Sobolev embedding. The
main point is that W(l) is a constant a.e. on L.

Note that p4n11 can be much smaller than the Sobolev threshold, dim M4n1
1k.

The assertion that the function W : LKZ defined only a.e. (and not necessarily
continuous) is constant is quite striking. This fact can also be related to the
following:

LEMMA 3 [2, 3]. Let L be any open connected set in Rk , kF1. Let W : LKZ be
any measurable function satisfying

�
L

�
L

NW(l)2W(m)Np

Nl2mNk11
dl dmEQ , with pF1 .

Then W is constant a.e. on L.

REMARK. Surprizingly, the exponent p4n11 in Theorem 5 is optimal. If
nEpEn11 (resp. p4n), the map

x�S n O f (x , l)�S n

belongs to W 1, p (S n ; S n ) for a.e. l�L. Thus, it is continuous (resp. VMO) and we
may still define

W(l)4deg ( f (Q , l) ) for a.e. l�L .

However W need not be constant. It is not difficult to construct examples, even with
L4 (0 , 1 ), where W takes two different values.

The precise homotopy structure of W 1, p (S n3L ; S n ) might be quite complicated
when L has a rich topological structure. However if L is simple, e.g. a ball, we have a
complete description of the homotopy classes of W 1, p for all values of p , 1G
GpEQ:

THEOREM 6 [5]. Let M4V4S n3B , where nF1 and B is the unit ball in Rk , kF
F1. Let N4S n. Let f , g�W 1, p (M ; N).

If pFn11, then

[ fAg in W 1, p ] ` [deg ( f )4deg (g) ] ,

where the degree is defined in Theorem 5.
If pEn11, then

fAg in W 1, p (f , g ,

i.e., W 1, p (M ; N) is path-connected (pEn11.

In other words we have a threshold at p4n11. As p increases from 1 to Q, the
space W 1, p (M ; N) decreases. When 1EpE (n11), W 1, p is path-connected. At p4
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4n11 the space W 1, n11 «suddenly» splits into infinity many components. As p in-
creases from n11 to Q, each components «shrinks without changing its shape» (no
further splitting occurs).

3. THE HOMOTOPY STRUCTURE OF W 1, p (M ; N) FOR GENERAL M AND N

At this stage, we decided with Yanyan Li, in 1999, to investigate the homotopy
structure of W 1, p for general manifolds M and N and general p� [1 , Q). We ob-
tained several general results. We also analyzed completely several examples (see e.g.
Theorem 6 and Theorem 8 below). On the basis of these observations we made several
general conjectures which were beautifully solved by Hang and Lin [9].

Here is a first universal result:

THEOREM 7 [5]. Assume dim MF2. Then W 1, p (M ; N) is path-connected for any p ,
1GpE2 and any N.

Our original proof of Theorem 7 is rather sophisticated. Theorem 7 may also be
deduced form a general result of Hang-Lin (see Theorem 10 below). In view of the ex-
treme simplicity of the statement of Theorem 7, it would be desirable to have a simpler
proof.

Another example we studied carefully is N4S 1 with M arbitrary and pF2:

THEOREM 8 [5]. Assume dim MF2 and N4S 1. Let f , g�W 1, p (M ; N) with
pF2.

Then

[ fAg in W 1, p ] ` [ fAg in H 1 ] .
Moreover any map f in H 1 (M ; N) is homotopic in H 1 to a smooth map.

As a consequence we see that if dim MF2 and if N4S 1 :

– for 1GpE2, W 1, p (M ; N) is path-connected,

– for p42, H 1 (M ; S 1 ) splits into infinitely many components (provided
p 1 (M)c0),

– as p increases from 2 to Q , W 1, p shrinks without changing its shape.

Let us summarize some of the examples discussed above:
Ex. 1: M4N4S n,
Ex. 2: M4S n3B , N4S n,
Ex. 3: M arbitrary with dim MF2, N4S 1,

In all these example we see that there is exactly one distinguished value of p, say
p *, such that:

– when pEp * , W 1, p is path-connected
– when pFp * , W 1, p shrinks without changing its shape.
We discovered with YanYan Li, that more interesting scenarios might occur with a

cascade of numbers p * where a splitting (resp. collapse) of components occurs as p in-
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creases (resp. decreases) and p crosses the distinguished values p *. Here is such an
example:

Let M4N4S 13S 2. For any map f : MKN write

f4 ( f1 , f2 )4 ( f1 (x1 , x2 ), f2 (x1 , x2 ) ) .

In view of Theorem 5 we may consider

d14deg ( f1 (Q , x2 ) )

which is well-defined (and independent of x2 a.e.) when f�W 1, p and pF2.
We may also consider

d24deg ( f2 (Q , x1 ) )

when f�W 1, p and pF3.
If 1GpE2, W 1, p is path-connected. For p in the interval [2, 3), W 1, p admits in-

finitely many components classified by d1 . When p reaches the value p43 a further
splitting of W 1, p occurs (due, in particular, to the appearance of d2). As p increases in
the interval [3, Q), no new «catastrophe» occurs: the components of W 1, p shrink
without changing their shapes.

In this example we see that there are two distinguished values of p , p42 and p4
43, where the homotopy type of W 1, p changes. This motivated us to introduce a new
concept which expresses rigorously that a change of homotopy type occurs at p.

Let p be a real number pF1 and f�W 1, p (M ; N). We denote by [ f ]p the equiva-
lence class of f, i.e.,

[ f ]p4]g�W 1, p (M ; N); gA f in W 1, p( .

The quotient space of W 1, p by this equivalence relation is denoted W
A1, p.

Assume pD1 and 0EeEp21. The map

ip , e : [ f ]p1eK [ f ]p2e

is well-defined from W
A1, p1e in W

A1, p2e.
Set

CT(M , N)4]p� (1 , Q); ip , e is notbijective for all 0EeEp21(

Let me explain, roughly speaking, the meaning of this concept. The fact that ip , e is not
injective says that we can find two maps f , g�W 1, p1e such that:

a) fAg in W 1, p2e

b) f is not homotopic to g in W 1, p1e

In other words, 2 components of W 1, q have coalesced as q decreases from p1e to
p2e.

The fact that ip , e is not surjective says that some f�W 1, p2e is not homotopic to any
g�W 1, p1e. In other words, a new component of W 1, q is «born» as q decreases from
p1e to p2e.

We made in [5] two conjectures:

CONJECTURE 1. CT(M , N) consists only of integers, i.e., a change of topology for
W 1, p occurs only when p is an integer.
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CONJECTURE 2. Any map f�W 1, p (M , N) can always be connected in W 1, p to a
smooth map (any p, any M, any N).

They were both solved in a beautiful piece of work by Hang and Lin [9].
The answer to Conjecture 1 is positive:

THEOREM 9 [9]. CT(M , N) consists only of integers.

Theorem 9 is an immediate consequence of the following remarkable result which
provides a «reduction» of the study of homotopy classes for W 1, p to more classical
concepts in Topology. Given pF2, let M [p]21 be the ([p]21)-skeleton of M.

THEOREM 10 [9]. Let f , g�W 1, p (M , N). Then fAg in W 1, p if and only if fNSAgNS

in C 0 for a generic S in M [p]21.

Note that dim SG [p]21, and for a generic S, fNS�W 1, p (S), while pDdim S
(since [p]Fdim S11). Thus for a generic S, fNS�C 0, by the Sobolev embed-
ding.

Concerning Conjecture 2, we had presented in [5] several cases where Conjecture
2 is true: for example when dim M42 (any N), or dim M43 and ¯Mcf (any N), or
N4S 1 (any M). However Hang and Lin [9] found some situations where Conjecture
2 fails.

Here is such an example:

THEOREM 11 [9]. Let M4RP3 and N4RP2. Then CT(M , N)4]2, 3(. More-
over, there are maps f�W 1, p (M , N), with p� [2 , 3 ), such that f cannot be path-con-
nected in W 1, p to any smooth map.
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