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Consider the Sobolev class W1, p(M, N) where M and N are compact manifolds.
We present some sufficient conditions which guarantee that W1, p(M, N) is path-
connected. We also discuss cases where W1, p(M, N) admits more than one com-
ponent. There are still a number of open problems, especially concerning the values
of p where a change in homotopy classes occurs. � 2001 Academic Press

0. INTRODUCTION

Let M and N be compact1 connected oriented smooth Riemannian
manifolds with or without boundary. Throughout the paper we assume
that dim M�2 but dim N could possibly be one, for example N=S1 is of
interest. Our functional framework is the Sobolev space W1, p(M, N) which
is defined by considering N as smoothly embedded in some Euclidean
space RK and then

W1, p(M, N)=[u # W1, p(M, RK); u(x) # N a.e.],

with 1�p<�. W 1, p(M, N) is equipped with the standard metric
d(u, v)=&u&v&W1, p . Our main concern is to determine whether or not
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1 See Remark A.1 in the Appendix if N is not compact.



W1, p(M, N) is path-connected and if not what can be said about its path-
connected components, i.e. its W1, p-homotopy classes. We say that u and
v are W1, p-homotopic if there is a path ut # C([0, 1], W1, p(M, N)) such
that u0=u and u1=v. We denote by tp the corresponding equivalence
relation. Let t denote the equivalence relation on C0(M, N), i.e. utv if
there is a path ut # C([0, 1], C0(M, N)) such that u0=u and u1=v.

First an easy result

Theorem 0.1. Assume p�dim M, then W1, p(M, N) is path-connected if
and only if C0(M, N) is path-connected.

Theorem 0.1 is basically known (and relies on an idea introduced by Schoen
and Uhlenbeck [SU] when p=dim M; see also Brezis and Nirenberg [BN]).
One can also deduce it from Propositions A.1, A.2 and A.3 in the Appendix.

Since, in general, C0(M, N) is not path-connected, this means that
W1, p(M, N) is not path-connected when p is ``large''. On the other hand if
p is ``small'', we expect W1, p(M, N) to be path-connected for all M and N.
Indeed we have

Theorem 0.2. Let 1�p<2 (and recall that dim M�2). Then W1, p(M, N)
is path-connected.

Our proof of Theorem 0.2 is surprisingly involved and requires a number
of technical tools which are presented in Sections 1�4. We call the attention
of the reader especially to the ``bridging'' method (see Proposition 1.2 and
Proposition 3.1) which is new to the best of our knowledge.

Remark 0.1. Assumption 1�p<2 in Theorem 0.2 is sharp (for general
M and N). For example if 4 is any open connected set (or a connected
Riemannian manifold) of dimension �1, then W1, 2(S1_4, S1) is not
path-connected. This may be seen using the results of B. White [W2] or
Rubinstein�Sternberg [RS]. This is also a consequence of the result in
[BLMN] which we recall for the convenience of the reader. Let 4 be a
connected open set (or Riemannian manifold) of dimension �1 and let
u # W1, p(Sn_4, Sn) with p�n+1 (n�1). Then for a.e. * # 4 the map
u( } , *): Sn � Sn belongs to W1, p and thus it is continuous. So deg (u( } , *))
is well-defined. In this setting, the result of [BLMN] asserts that this
degree is independent of * (a.e.) and that it is stable under W1, n con-
vergence. Clearly this implies that W1, p(Sn_4, Sn) is not path-connected
for p�n+1.

Our next result is a generalization of Theorem 0.2.
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Theorem 0.3. Let 1�p<dim M, and assume that N is [ p&1]-connected,
i.e.

?0(N)= } } } =?[ p&1](N)=0.

Then W1, p(M, N) is path-connected.

An immediate consequence of Theorem 0.3 is

Corollary 0.1. For 1�p<n, W1, p(Sn, Sn) is path-connected.

Remark 0.2. If 1�p<2 (i.e. the setting of Theorem 0.2) then the hypo-
thesis on N in Theorem 0.3 reads ?0(N)=0, i.e. N is connected (which is
always assumed), and thus Theorem 0.3 implies Theorem 0.2. Assumption
p<dim M is sharp. Just take M=N=Sn and p=n, and recall (see e.g.
[BN]) that W1, n(Sn, Sn) is not path-connected since a degree is well-
defined.

Corollary 0.1 may also be derived from the following general result
(which is proved in Section 1.6).

Proposition 0.1. For any 1�p<n and any N, W1, p(Sn, N) is path-
connected.

In the same spirit we also have

Proposition 0.2. For any m�1, any 1�p<n+1 and any N,
W1, p(Sn_Bm

1 , N) is path-connected.

Here Bm
1 is the unit ball in Rm.

Remark 0.3. As in Remark 0.1, assumption p<n+1 is optimal since
W1, p(Sn_Bm

1 , N) is not path-connected when p�n+1 and ?n(N){0. This
is again a consequence of a result in [BLMN] (Section 2, Theorem 2$).

An interesting problem which we have not settled is the following

Conjecture 1. Given u # W 1, p(M, N) (any 1�p<�, any M, any N),
there exists a v # C�(M, N) and a path ut # C([0, 1], W 1, p(M, N)) such that
u0=u and u1=v.

We have strong evidence that the above conjecture is true. First observe
that if p�dim M, Conjecture 1 holds (this is a consequence of Proposi-
tion A.2 in the Appendix). Next, it is a consequence of Theorem 0.2 that
the conjecture holds when dim M=2. Indeed if p<2, any u may be
connected to a constant map; if p�2=dim M we are again in the situation
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just mentioned above. Conjecture 1 also holds when M=Sn (any p and
any N); this is a consequence of Proposition 0.1 when p<n.

Here are two additional results in support of Conjecture 1.

Theorem 0.4. If dim M=3 and �M{< (any N and any p), Conjec-
ture 1 holds.

Theorem 0.5. If N=S1 (any M and any p), Conjecture 1 holds.

Theorem 0.4 is proved in Section 6 and Theorem 0.5 is proved in Section 7.
Next we analyze how the topology of W1, p(M, N) ``deteriorates'' as p

decreases from infinity to 1. We denote by [u] and [u]p the equivalence
classes associated with t and tp . It is not difficult to see (Proposition A.1
in the Appendix) that if u, v # W1, p(M, N) & C0(M, N), 1�p<�, with
utv, then utp v. As a consequence we have a well-defined map

ip : [u] � [u]p

going from C1(M, N)�t to W1, p(M, N)�tp .
The following definition is natural:

Definition 0.1. If ip is bijective, we say that W1, p(M, N) and
C0(M, N) have the same topology (or more precisely the same homotopy
classes).

In the Appendix, we show

Proposition 0.3. For p�dim M, W1, p(M, N) and C0(M, N) have the
same topology.

Another, much more delicate, case where W1, p(M, N) and C 0(M, N)
have the same topology is

Theorem 0.6. For any p�2 and any M, W1, p(M, S1) and C 0(M, S1)
have the same topology.

Remark 0.4. On the other hand, W1, p(M, S1) and C0(M, S1) do not
have the same topology for p<2 if C0(M, S1) is not path-connected; this
is a consequence of Theorem 0.2.

For q�p we also have a well-defined map

ip, q : W1, q(M, N)�tq � W1, p(M, N)�tp .
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It is then natural to introduce the following

Definition 0.2. Let 1<p<�. We say that a change of topology
occurs at p if for every 0<=<p&1, ip&=, p+= is not bijective. Otherwise we
say that there is no change of topology at p. We denote by CT(M, N) the
set of p's where a change of topology occurs.

Note that if p>1 is not in CT, then there exists 0<=� <p&1 such that
ip1, p2

is bijective for all p&=� <p1<p2<p+=� . Consequently, CT is closed.
In fact we have the following property of CT(M, N) which relies on
Theorem 0.2.

Proposition 0.4. CT(M, N) is a compact subset of [2, dim M].

Remark 0.5. Assuming that Conjecture 1 holds, then ip, q is always sur-
jective. As a consequence, a change of topology occurs at p if for every
0<=<p&1, ip&=, p+= is not injective, i.e., for every 0<=<p&1, there
exist u= and v= in C1 such that [u=]p&==[v=]p&= while [u=]p+= {
[v=]p+= .

Another consequence of Theorem 0.2 is

Proposition 0.5. If CT(M, N)=< then C 0(M, N) and W1, p(M, N)
are path-connected for all p�1.

Remark 0.6. Assuming that Conjecture 1 holds, then the following
statements are equivalent:

(a) CT(M, N)=<.

(b) C0(M, N) is path-connected.

(c) W1, p(M, N) is path-connected for all p�1.

Here is another very interesting conjecture

Conjecture 2.

CT(M, N)/[2, 3, ..., dim M].

A stronger form of Conjecture 2 is

Conjecture 2$. For every integer j�1 and any p, q with j�p�q<
j+1, ip, q is bijective.

Remark 0.7. If Conjecture 1 holds, then Conjecture 2$ can be stated as
follows: assume u, v # W1, p(M, N) (any p, any M, and any N) are
homotopic in W1, [ p](M, N), then they are homotopic in W 1, p(M, N).
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In connection with Conjecture 2 we may also raise the following

Open problem. Is it true that for any n�2 and any 1/[2, 3, ..., n],
there exist M and N such that dim M=n and

CT(M, N)=1 ?

We list some more properties of CT(M, N) which will be discussed in
Section 8:

(1) For all N,

CT(Bn
1 , N)=<. (0.1)

(2) For all N,

CT(Sn, N)={[n],
<,

if ?n(N){0,
if ?n(N)=0.

(0.2)

In particular,

CT(Sn, Sn)=[n]. (0.3)

(3) For all M,

CT(M, S1)={[2],
<,

if C0(M, S1) is not path-connected,
if C0(M, S1) is path-connected.

(0.4)

(4) If CT(M, N) is non-empty and ?0(N)= } } } =?k(N)=0 for some
k�0, then

min[ p; p # CT(M, N)]�min[k+2, dim M]. (0.5)

(5) If 4 is compact and connected with dim 4�1, then

min[ p; p # CT(Sn_4, Sn)]=n+1, n�1. (0.6)

It would be interesting to determine CT(M, N) in some concrete cases,
e.g. M and N are products of spheres. We plan to return to this question
in the future.

In this paper we have investigated the structure of the path-connected
components of W1, p(M, N), i.e. ?0(W 1, p(M, N)). It would be interesting to
analyze ?k(W1, p(M, N)) for k�1, starting from ?1(W1, p(M, N)). Of
course it is natural to consider first the case where 1�p<2 since we
already know that W1, p is path-connected.
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Warning. People have considered several spaces of maps closely related
to W1, p(M, N) (see e.g. White [W1] and [W2]), for example

Z1, p(M, N)=the closure in W1, p of C�(M, N).

This is a subset of W1, p(M, N) and in general a strict subset (see Bethuel
[B]). One may ask the same questions as above (i.e. path-connectedness,
etc.) for Z1, p(M, N). We warn the reader that the properties of Z1, p(M, N)
may be quite different from the properties of W1, p(M, N). For example, if
1�p<2, then W1, p(S1_4, S1) (4 connected, dim 4�1) is path-connected
by Theorem 0.2. On the other hand Z1, p(S1_4, S1) is not path-connected.
Indeed, note that if u # C�(S1_4, S1) then

�(u) :=�|
4

�|
S1

(u_u%) d% d* # Z

(and �(u) represents the degree of the map u( } , *) for any * # 4). By
density �(u) # Z for all u # Z1, p(S1_4, S1) and since � can take any
integer value it follows that Z1, p is not path-connected.

F. Bethuel [B] has been mostly concerned with the question of density
of smooth maps in W1, p(M, N). B. White [W2] deals with the question of
how much the topological properties are preserved by W1, p (or Z1, p, etc.).
We have tried to analyze how much of the topology ``deteriorates'' when
passing to W1, p, i.e., whether two smooth maps u, v # C�(M, N) in dif-
ferent homotopy classes (in the usual sense) can nevertheless be connected
in W1, p for appropriate p's. Roughly speaking our concerns complement
those of B. White as well as those in [BLMN]. However some of our
techniques resemble those of B. White and F. Bethuel.

1. SOME USEFUL TOOLS

In this section we present various techniques for connecting continuously
in W1, p a given map to another map with desired properties.

1.1. ``Opening '' of Maps

Let u belong to W1, p(Rn, N) where N is some k-dimensional Riemannian
manifold, and 1�p<�. The purpose of this operation is first to construct
a function v which belongs to W1, p(Rn, N) such that, for some point a # Rn,

(1) v(x)=u(x) for |x&a|>2,

(2) v(x)=constant for |x&a|<1,
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and to connect by homotopy the given u to this v. In this case we will say
that we have opened the map u at the point a. This type of construction
will be used frequently to connect a given map continuously to a constant
within the space W1, p(Rn, N), also when Rn is replaced by more general
domains or manifolds.

We start with the construction of v. We will always use Br to denote the
ball in Rn of radius r and centered at the origin, unless otherwise stated.

Lemma 1.1. Let u # W1, p(B4), p�1, n�1. Assume

|
B4

|{u(x)| p

|x| n&1 dx<�. (1.1)

Then 0 is a Lebesgue-point of u, and in polar coordinates, with r=|x| and
_= x

|x| ,

u(0), |x|�1,

v(x) :={u(2r&2, _), 1<|x|<2,

u(x), 2�|x|<4

is in W1, p(B4).

Proof. We split the argument into 4 steps.

Step 1. We claim that

�|
B=
} u&�|

B=

u }�C |
B=

|{u(x)|
|x|n&1 , (1.2)

where C is some constant depending only on n.

Proof. By Poincare� inequality,

|
B1
} u&�|

B1

u }�C |
B1

|{u(x)|

and therefore

|
B1
} u&�|

B1

u }�C |
B1

|{u(x)|
|x| n&1 .

Estimate (1.2) follows from the above by scaling.
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Step 2. Under the assumption of Lemma 1.1,

lim
= � 0

�|
�B=

u exists (1.3)

and therefore

lim
= � 0

�|
B=

u exists. (1.4)

Proof. Set

w(r)=�|
�Br

u.

Then, in polar coordinates,

w$(r)=�|
Sn&1

ur(r, _) d_

and therefore

|
1

0
|w$(r)| dr�C �|

B1

|{u(x)|
|x|n&1 .

Hence (1.3) holds, and (1.4) is an immediate consequence.

Step 3. 0 is a Lebesgue point of u.

Proof. By Step 1 we have, for all c # R,

�|
B=

|u&c|�C |
B=

|{u(x)|
|x|n&1 + } c&�|

B=

u }.
Choosing c=lim= � 0 ��B=

u, we find that 0 is a Lebesgue point of u.

Step 4. v is in W1, p(B4).

Proof. A simple calculation yields

|
B2"B1

|v|=|
Sn&1 |

2

1
|v(r, _)| rn&1 dr d_

�C |
Sn&1 |

2

0

|u(s, _)|
sn&1 sn&1 ds d_=C |

B2

|u(x)|
|x|n&1 .
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We also have

|
B2

|u(x)|
|x|n&1=|

2

0

1
rn&1 _|�Br

|u|&
�

1
2n&1 |

B2

|u|+(n&1) |
2

0 _
1
rn |

BR

|u|& dr. (1.5)

Since 0 is a Lebesgue point, limr � �
1
rn �Br

|u&u(0)|=0, and therefore the
second integral on the right-hand side is finite and thus

|
B2"B1

|v|<�. (1.6)

Similarly,

|
B2"B1

|{v| p�C |
S n&1 |

2

0

|{u(s, _)| p sn&1

sn&1 ds d_

�C |
B2

|{u(x)| p

|x|n&1 <�,

by (1.1). Combining this with (1.6) we obtain that v # W 1, p(B2"B1).
To show that v # W1, p(B4) we only need to verify on �B1 , in the sense

of trace, that v&u(0)=0. For 1<r<2, with s=2r&2, we have

|
�Br

|v&u(0)|=\r
s+

n&1

|
�Bs

|u&u(0)|�\2
s+

n&1

|
�Bs

|u&u(0)|,

and, since x=0 is a Lebesgue point of u,

1
sn |

s

0 {|�B+

|u&u(0)|= d+=
1
sn |

Bs

|u&u(0)| � 0, as s � 0.

So, along a subsequence si � 0,

lim
i � 0 |�Bri

|v&u(0)|= lim
i � �

1
sn&1

i
|

�Bsi

|u&u(0)|=0,

where ri=
1
2(s i+2) � 1+. Lemma 1.1 is established.

Remark 1.1. If condition (1.1) is replaced by

|
B4

|{u(x)| p

|x&a|n&1 dx<� (1.7)

330 BREZIS AND LI



for some |a|<1, then the conclusion of Lemma 1.1 holds with the origin
shifted to a, with v defined in B3 instead of B4 . Note that by Fubini's
theorem, if u # W1, p(B4), then almost all points a in B1 satisfy (1.7). Such
a point will be called a ``good'' point.

Our next result provides a homotopy connecting a given map u to the
map v constructed in the previous lemma.

Proposition 1.1. Under the hypotheses of Lemma 1.1, set, for 0<t�1,

u(0), |x|�t,
ut(x) :={u(2r&2t, _), t<|x|�2t,

u(x), 2t�|x|�4,

and u0=u. Then

ut # C([0, 1], W1, p(B4)).

Proof. By Lemma 1.1, ut is well-defined and, by standard arguments, is
continuous for t # (0, 1]. We only need to show that ut � u in W1, p(B4) as
t � 0+. In view of the expression of ut, this amounts to showing

lim
t � 0+

&ut&W1, p[t�|x|�2t]=0. (1.8)

An easy calculation yields

|
t�|x|�2t

|ut|�Ctn&1 |
| y|�2t

|u( y)|
| y| n&1 ,

and

|
t�|x|�2t

|{ut| p�Ctn&1 |
| y|�2t

|{u( y)| p

| y|n&1 .

Assertion (1.8) follows from the above, (1.1) and (1.5). Proposition 1.1 is
established.

1.2. ``Bridging '' of Maps

To simplify the presentation we explain first the construction in the easy
2-dimensional case.

Consider the square

0=[x=(x1 , x2); |x1|<20, |x2 |<20]
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and let

u # W1, p(0, N),

where N is any smooth (connected) Riemannian manifold with or without
boundary of dimension �1.

We assume that u is constant, say Y0 , in the region Q+ _ Q& where

Q+=[x=(x1 , x2); |x1|<20, 1<x2<20]

and

Q&=[x=(x1 , x2); |x1|<20, &20<x2<&1].

Our purpose is to construct a map v in W 1, p(0, N) such that

{v(x)=u(x)
v(x)=Y0

outside (&5, 5)_(&1, 1)
for |x1|<1 and |x2 |<20

and a homotopy connecting the given u to this v continuously in
W1, p(0, N) and which preserves u outside (&5, 5)_(&1, 1). We call this
a ``bridge'' because the regions Q+ and Q& where u=Y0 which were
originally disconnected have now become connected through the ``bridge''
(&1, 1)_(&20, 20).

Proposition 1.2. Take 0 and u as above with

1�p<2. (1.9)

Then there exists

ut # C([0, 1], W1, p(0, N))

such that

u0=u, (1.10)

ut(x)=u(x), \t # [0, 1], \x outside (&5, 5)_(&1, 1), (1.11)

u1(x)=Y0 , \x # (&1, 1)_(&20, 20). (1.12)

Proof. As in Remark 1.1 we may assume without loss of generality
(after shifting the origin in the x1 -direction) that

|
0

|{u(x)| p

|x1| p&1 dx1 dx2<�. (1.13)

Here we use the fact that p<2.
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Define for 0�t�1, x=(x1 , x2) # 0,

vt(x1 , x2)=u~ \x1 ,
x2

1&t\(x1)+ ,

where u~ , defined in (&20, 20)_R, is the extension of u taking the value Y0

in [(x1 , x2); |x1|<20, |x2 |�20] and \(x1)=(1&|x1| )+.
Clearly vt # C([0, 1), W1, p(0, N)) and satisfies (1.10), (1.11) (with ut

replaced by vt). Next, we check that vt is continuous at t=1. Fix any $>0;
it is clear that vt � v1 in W 1, p outside 0$=[(x1 , x2) # 0; |x1|<$]. Hence
it suffices to show that

sup
0<t�1

&vt&W 1, p(0$) � 0 as $ � 0. (1.14)

For this purpose we make a change of variables

!1 =x1 ,

!2=
x2

1&t\(x1)
,

so that the Jacobian

�(!1 , !2)
�(x1 , x2)

=
1

1&t\(x1)
�1.

Therefore, as $ � 0,

|
0$

|vt(x)| p dx=|
|!1|<$

|u(!)| p �(x1 , x2)
�(!1 , !2)

d!

�|
|!1|<$

|u(!)| p d! � 0 uniformly in t.

Next, it is easy to verify that

|{vt(x)|�
C |{u(!)|
1&t\(!1)

,

since {vt(x)=0 if |x2 |>1&t\(x1).
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It follows that, as $ � 0,

|
0$

|{vt(x)| p dx�C |
|!1|<$

|{u(!)| p

(1&t\(!1)) p (1&t\(!1)) d!

�C |
|!1|<$

|{u(!)| p

|!1| p&1 d! � 0.

Here we have used (1.13).
To summarize, we have connected u to v1 through a homotopy satisfying

(1.11). Moreover v1 satisfies also

v1(x)=Y0 \ |x2 |>|x1|.

The final step is to connect this v1, through a homotopy wt satisfying
(1.11), to some u1 satisfying (1.12). This can be achieved by choosing, for
example,

wt(x1 , x2)={Y0

v1(x1&t\(2x1), x2)
|x1|<t\(2x1),
|x1|�t\(2x1).

Remark 1.2. The conclusion of Proposition 1.2 fails when p�2 and
N=S1. We argue by contradiction. Suppose that the conclusion holds. We
may think of the maps u satisfying the conditions of the proposition as
defined on the annulus A=[(r, %) | 1<r<2, 0<%�2?], which are equal
to Y0 outside the sector 0<%<%0<2?. On the other hand, the u1 in the
conclusion of the proposition is equal to Y0 in a small annulus 5

4<r< 3
2 . To

reach a contradiction, we invoke the result in [BLMN] which allows to
define a degree for every map u # W1, p(A, S1), p�2. The degree is
invariant under homotopy within W1, p(A, S1). We may start with some
u # W1, p(A, S1), p�2, having nonzero degree, ending up with u1 having
zero degree.

1.3. ``Filling'' a Hole
Let B be the unit ball in Rn, u # W1, p(B, N), 1�p<n, be such that

u=Y0 on �B (1.15)

for some Y0 # N. Then u can be connected in W 1, p(B, N) to the constant
map Y0 through a homotopy which preserves the boundary condi-
tion (1.15). More precisely, we have

Proposition 1.3. Take B and u as above, and

1�p<n. (1.16)
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Then there exists

ut # C([0, 1], W1, p(B, N))

such that

u0=u, u1#Y0 ,

and

ut(x)=Y0 \0�t�1 and x # �B.

Proof. Let u~ be the extension of u to Rn by taking Y0 outside B, and
let

ut(x)=u~ \ x
1&t+ .

To complete the proof we only need to verify that ut � Y0 in W 1, p as t � 1.
Since ut and Y0 have the same boundary condition, it suffices to show that
&{(ut&Y0)&L p(B)=&{ut&L p(B) � 0.

This can be easily seen from

|
B

|{ut| p=(1&t)n& p |
B

|{u| p.

Remark 1.3. The conclusion of Proposition 1.3 no longer holds if we
take p�n and ?n(N){<. Indeed, fix some continuous . from Sn to N
which is not homotopic to a constant. We can always assume that . is
smooth. Fix any point x0 # Sn and set Y0=.(x0); we may assume, after a
smooth homotopy, that .(x)=Y0 for x near x0 , say x # Br(x0) for some
r>0. Since Sn"Br(x0) is diffeomorphic to the unit ball B of Rn, the conclu-
sion of Proposition 1.3 holds there and allows to connect . to Y0 through
a homotopy in W1, p(Sn"Br(x0)) which is equal to Y0 on �(Sn"Br(x0)).
This yields a homotopy of . to a constant in W1, p(Sn, N). For p>n, this,
combined with the Sobolev embedding, contradicts the assumption that .
is not trivial. When p=n, we use the embedding of W1, n into VMO and
complete the argument as in [BN].

1.4. ``Connecting '' Constants

The purpose of the simple construction below is to homotopy a given
map u which is a constant Y0 on some compact set K to a map v which
equals another given constant Y1 on K, while preserving through the
homotopy the values of u outside a given neighborhood of K.
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Proposition 1.4. Let K be any compact subset of M, =>0, Y0 # N,
1�p<�, u # W1, p(M, N), and

u(x)=Y0 , if dist(x, K)�=.

Then, given any Y1 # N, there exists

ut # C([0, 1], W 1, p(M, N)),

such that

u0=u,

ut(x)=u(x), \t # [0, 1], if dist(x, K)>=�2,

u1(x)=Y1 , if dist(x, K)<=�4.

Proof. Let f # C�([0, 1], N) such that f (0)=Y0 , f (1)=Y1 .
Take \ # C�(M) such that 0�\�1

\(x)={1 if dist(x, K)�=�4,
0 if dist(x, K)�=�2.

Set

ut(x)={u(x)
f (t\(x))

if dist(x, K)�=,
if dist(x, K)<=.

This is a desired homotopy.

1.5. ``Propagation'' of Constants

The purpose of this construction is to homotopy a given u, which is
constant in some initial region, to a map v which is the same constant in
a larger region, while preserving u ``away'' from the larger region. Here, the
initial region can be smoothly deformed to the larger one and thus we
make no restriction on p. This is in contrast with the ``bridging'' technique
above, which involves a change in topology and requires a restriction on
p (see e.g. Remark 1.2). To explain the construction we start with the case
where the initial region is a small ball.

Proposition 1.5. Let u # W1, p(B1 , N), where B1 is the unit ball centered
at the origin in some Euclidean space. Suppose, for some 0<=� <1 and
Y0 # N,

u(x)=Y0 , \ |x|<=� .
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Then, for all 0<=<1&=� , there exists ut # C([0, 1], W1, p(B1 , N)) such that

u0=u,

ut(x)=Y0 , \0�t�1, |x|<=� ,

ut(x)=u(x), \0�t�1, 1&
=

2
<|x|<1,

u1(t)=Y0 , \ |x|<1&=.

Proof. Let

.t : B1 � B1

be a diffeomorphism which is smooth in (t, x) # [0, 1]_B1 having the
following properties:

.0 =id,

.t(x)=x, \0�t�1, 1&
=

2
<|x|<1,

|.t(x)|�|x| , \ |x|�=� ,

|.1(x)|�=� , \ |x|�1&=.

Then ut :=u b .t is a desired homotopy.

This proposition is often used as follows. For S/K/M, u #
W1, p(M, N), u(x)=Y0 , near S, we would like to connect u to some v
which is Y0 in a $-neighborhood of K while along the homotopy the values
in some neighborhood of S are preserved as Y0 and the values outside the
$$-neighborhood are preserved ($$>$). Suppose that we are able to con-
struct a diffeomorphism

�: B1 � $$-neighborhood of K,

B1 /Rn, dim M=n, such that

$-neighborhood of K/�(B8�9),

u(x)=Y0 , \x # �(B1�9),

and

�(B1�9) contains some neighborhood of S.

Then we can apply the proposition to u b � with ===� = 1
9 .
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In our later applications, the construction of � is always obvious and we
will not really construct � explicitly but only refer to this techniques as
``propagation'' of constants.

1.6. Some Straightforward Applications
We now present some immediate applications of the above techniques.

Proposition 1.6. W1, p(Bn
1 , N) is path-connected for any n, any p, and

any N.

Proof. Let u # W1, p(Bn
1 , N); we first ``open'' the map u at a ``good''

point near the origin (Proposition 1.1 and Remark 1.1) to connect u to
some v # W1, p(Bn

1 , N) satisfying, for some 0<r<1 and Y0 # N,

v(x)=Y0 \ |x|<r.

Then the homotopy vt(x)=v(tx) (r�t�1) connects v to Y0 . Finally, by
Proposition 1.4, any two constant maps can be connected to each other.

Proposition 0.1. For any 1�p<n and any N, W1, p(Sn, N) is
path-connected.

Proof of Proposition 0.1. Let u # W1, p(Sn, N). By ``opening'' u at a
``good'' point, we connect u to some v # W1, p(Sn, N) satisfying v=Y0 in a
geodesic ball Br . Since Sn"Br is topologically a ball, we can apply Proposi-
tion 1.3 to connect v to the constant map Y0 . Here we use p<n.

2. PROOF OF THEOREM 0.2 WHEN dim M=2

We discuss only the case where �M=<; for the case where �M{<, see
Remark 2.1 at the end of this section. Consider a triangulation [T1 , ..., T l]
of M. Let [v1 , ..., vk] be the collection of all vertices in the triangulation,
and let [e1 , ..., em] be the collection of all edges.

Our purpose is to show that any u # W1, p(M, N) is homotopic to a con-
stant. In order to connect u to a constant, Y0 , we proceed in three steps.
First, we connect u to some u0 which equals Y0 near all the vertices. Then,
we connect u0 to some u1 which equals Y0 near all the edges. Finally, we
connect u1 to Y0 .

Step 1. Connect u to u0 which equals Y0 near all the vertices.

This is easily done by ``opening'' of maps (Proposition 1.1) and ``connect-
ing'' constants (Proposition 1.4).
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To open the map we may always choose ``good'' points (in the sense of
(1.7)) near the vertices and open from there.

Step 2. Connect u0 to u1 which equals Y0 near all the edges.

We proceed by induction on the number of edges. First, for a single e1 ,
recall that u0 equals Y0 near �e1 , the two end-points of e1 . By ``propaga-
tion'' (Proposition 1.5) and ``bridging'' (Proposition 1.2), we connect u0 to
u0, 1 which equals Y0 near e1 _ [all vertices]. To proceed with the induc-
tion, we may assume that we have connected u0 to a map u0, k which equals
Y0 in an =-neighborhood of e1 _ } } } _ ek _ [all vertices]. We now wish to
add ek+1 to the collection. There are three possibilities:

Case 1. ek+1 & [e1 _ } } } _ ek]=<,

Case 2. ek+1 & [e1 _ } } } _ ek]=1-vertex,

Case 3. ek+1 & [e1 _ } } } _ ek]=2-vertices.

In all cases, we can find 0<$<<= such that

Z & {[$-neighborhood of ek+1]>{ =
2

-neighborhood of �ek+1===<,

where Z=e1 _ } } } _ ek _ [all vertices].
By ``propagation'' (Proposition 1.5) and ``bridging'' (Proposition 1.2) we

end up with a map u0, k+1 which equals Y0 near Z _ ek+1 . We may do so
keeping u0, k+1=u0, k outside

[$-neighborhood of ek+1]>{ =
2

-neighborhood of �ek+1= .

This completes the induction and Step 2 is finished.

Step 3. Connect u1 to Y0 .

Recall that u1 equals Y0 near �Ti for all 1�i�l.
Applying Proposition 1.3 (``Filling'' a hole) successively on T1 , ..., Tl

yields the desired conclusion.

Remark 2.1. By a standard procedure (e.g. reflection across the bound-
ary) we construct a smooth neighborhood M$ of M and an extension of u
to M$, still denoted by u # W1, p(M$, N). We then proceed as above.
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3. SOME MORE TOOLS

Here we return to the ``bridging'', ``opening'' and ``filling'' techniques
described in Sections 1.1�1.3, and present some refinements.

We work in Rn, n�2 and we distinguish some special variables. For
0�l�n&2, we write

x=(x$, x"),

where x$=(x1 , ..., xn&l&1), x"=(xn&l , ..., xn).
Let

0=[(x$, x"); |x$|<20, |x"|<20].

Proposition 3.1. Assume u # W1, p(0, N),

1�p<l+2, (3.1)

and

u(x)=Y0 \x, 1<|x"|<20, |x$|<20,

for some Y0 # N.
Then there exists ut # C([0, 1], W1, p(0, N)) such that

u0=u (3.2)

ut(x)=u(x), \0�t�1, x outside[x; |x"|<1, |x$|<1], (3.3)

u1(x)=Y0 , \x, |x"|<20, |x$|<1�8, (3.4)

Remark 3.1. The case n=2 and l=0=n&2 corresponds to Proposi-
tion 1.2 with x$=x1 , and x"=x2 . Assumption (3.1) is consistent with the
assumption p<2 there.

Proof of Proposition 3.1. If l=n&2, then x$=x1 ; if 0�l<n&2, we
write x$=(x1 , x~ ), x~ =(x2 , ..., xn&l&1).

As in Remark 1.1, we may assume (by an appropriate selection)

|
0

|{u(x)| p

|x1| p&l&1<�. (3.5)

It is here that we use (3.1).
For 0�t�1, x=(x1 , x~ , x") # 0, define

vt(x1 , x~ , x")=u~ \x1 , x~ 1 ,
x"

1&t\(x1) '(x~ )+ ,
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where \(x1)=(1&|x1| )+ and

1 |x~ |�1,

'(x~ )={2&|x~ | 1<|x~ |<2,

0 |x~ |�2.

Here u~ , defined in

[(x$, x"); |x$|<20, x" # Rl+1],

is the extension of u taking the value Y0 in [(x$, x"); |x$|<20, |x"|�20].
Clearly vt # C([0, 1), W1, p(0, N)) and satisfies (3.2) and (3.3). Next we
check that vt is continuous at t=1. Fix any $>0; it is clear that, as t � 1,
vt � v1 in W1, p outside 0$=[(x1 , x~ , x") # 0; |x1|<$].

Hence it suffices to show that

sup
0<t�1

&vt&W 1, p(0$) � 0 as $ � 0.

For this purpose we make a change of variables

!1 =x1 ,

{ !� =x~ ,

!"=
x"

1&t\(x1) '(x~ )
,

so that the Jacobian

�(!1 , !� , !")

�(x1 , x~ , x")
=

1

[1&t\(x1) '(x~ )]
l+1

�1.

Therefore, as $ � 0,

|
0$

|vt(x)| p dx � 0 uniformly in t.

Next,

|{vt(x)|�
C |{u(!)|

[1&t\(!1) '(!� )]
.
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It follows, as $ � 0, that

|
0$

|{vt(x)| p dx�C |
|!1|<$

|{u(!)| p [1&t\(!1) '(!� )]l+1

[1&t\(!1) '(!� )] p
d!

�C |
|!1|<$

|{u(!)| p d!
|1&\(!1)| p&l&1 � 0.

Here we have used (3.5).
So far we have connected the original u to v1 through a homotopy

satisfying (3.2), (3.3) and v1 has the property that

v1(0, x~ , x")=Y0 \ |x~ |<1, |x"|<20.

The final step is to connect this v1, through a homotopy wt satisfying (3.3),
to some u1 satisfying (3.4). This can be achieved by choosing for example

wt(x1 , x~ , x")={Y0 ,
v1(x1&t\(2x1) '(2x~ ), x~ , x"),

|x1|<t\(2x1) '(2x~ ),
|x1|�t\(2x1) '(2x~ ).

Remark 3.2. The conclusion of Proposition 3.1 no longer holds if we
take p�l+2 and ?l+1(N){< (this can be seen as in Remark 1.2).

We now present a refinement of the ``opening'' technique in Section 1.1
which will be used in the proof of Theorem 0.3. Here the map u also
depends on ``dummy'' parameters a # A; but the ``opening'' is done with
respect to the x variables.

Proposition 3.2. Let N and A be smooth Riemannian manifolds with or
without boundary, and let u # W1, p(B4_A, N) where p�1 and B4 is the ball
in Rn of radius 4 and centered at the origin. Then there exists a continuous
path ut # C([0, 1], W 1, p(B4_A, N)) such that u0=u, ut(x, a)=u(x, a) for
all t # [0, 1], a # A, and x # B4"B2�3 and, for some Y # W1, p(A, N),
u1(x, a)#Y(a) for a # A and x # B1�3 .

Remark 3.3. It is easy to see from the proof that the map Y(a) can be
taken as some u(x� , a) with |x� | as small as we wish.

The proof relies on several lemmas; the first one is an extension of
Lemma 1.1.

Lemma 3.1. Let u # W1, p(B4_A), p�1. Assume

|
B4_A

|{u(x, a)| p

|x|n&1 dx da<�, (3.6)
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where { denotes the full gradient, {=({x , {a). Then there exists some
f # L p(A), such that, as = � 0,

�|
B=

&u(x, } )& f ( } )&L1(A) dx � 0, (3.7)

If in addition we assume that {a f # L p(A), then

f (a), |x|�1, a # A,

v(x, a) :={u \\1&
1

|x|+ 2x, a+ , 1<|x|<2, a # A,

u(x, a), 2�|x|�4, a # A,

is in W1, p(B4_A).

Proof. We follow the 4 steps described in the proof of Lemma 1.1.

Step 1. We claim that

�|
B= "u&�|

B=

u"L1(A)

�C |
B=

&{xu(x, } )&L1(A)

|x|n&1 . (3.8)

The proof is the same as the proof of step 1 in Lemma 1.1, except that | } | is
replaced by & }&L1(A) , i.e., we think of u as a function in W1, 1(B4 , L1(A)).

Step 2. Both lim= � 0 ���B=
u(_, } ) d_ and lim= � 0 ��B=

u(x, } ) dx exist in
L1(A). They are equal, and we denote them by f.

Again the proof is the same, replacing u by a vector valued function
whose target is the Banach space L1(A).

Step 3. 0 is a Lebesgue point of u considered as a function in L1(B4 ,
L1(A)), i.e., as = � 0,

�|
B=

&u(x, } )& f ( } )&L1(A) dx � 0.

Step 4. v is in W1, p(B4_A).

As in the proof of Lemma 1.1, we first obtain

|
B2"B1

|
A

|v(x, a)| dx da<�,
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and

|
B2"B1

|
A

|{xv(x, a)| p dx da�C |
B2
|

A

|{xu(x, a)| p

|x| n&1 dx da<�.

On the other hand, a change of variables yields

|
B2"B1

|
A

|{av| p�C |
B2
|

A

|{au(x, a)| p

|x|n&1 <�.

So far we have proved that v # W1, p((B2"B1)_A).
In order to show that v # W1, p(B4_A) we only need to verify on

�B1_A, in the sense of trace, that v& f=0. For 1<r<2 and s=2r&2,
as in the proof of Lemma 1.1,

|
�Br_A

|v& f |�\2
s+

n&1

|
�Bs_A

|u& f |,

and, because of (3.7),

1
sn |

s

0 {|�B+_A
|u& f |= d+

�
C
sn |

Bs_A
|u(x, a)& f | � 0, as s � 0+.

So, along a subsequence si � 0+,

lim
i � � |

�Bri_A
|v& f |= lim

i � �

1
sn&1

i
|

�Bsi_A
|u& f |=0,

where ri (s1+2)�2 � 1+. Therefore the trace of v& f on (�B1)_A is zero.
Lemma 3.1 is established.

Lemma 3.2. Under the hypotheses of Lemma 3.1, set, for 0<t�1,

f, |x|�t, a # A,

ut(x, a) :={u \\1&
t

|x|+ 2x, a+ , t<|x|<2t, a # A,

u(x, a), 2t�|x|�4, a # A,

and u0=u. Then

ut # C([0, 1], W 1, p(B4_A)).
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Proof. As a consequence of Lemma 3.1 ut is well-defined and is con-
tinuous for t # (0, 1]. We only need to show that ut � u in W1, p(B4_A) as
t � 0+. In view of the expression of ut, it suffices to prove

lim
t � 0+

&ut&W1, p((B2t"Bt)_A)=0.

This follows from

:
0�|:| �1

|
(B2t"Bt)_A

|�:ut| p

�Ctn&1 :
0�|a|�1

|
B2t_A

|�:u(x, a)| p

|x| n&1 dx da � 0,

where we use �B2_A
|u(x, a)|p

|x|n&1 �C � (B2"B1)_A |v(x, a)| p<�. Lemma 3.2 is estab-
lished.

To prove Proposition 3.2, we need to select a good point x� so that
Lemma 3.2 can be applied, replacing the origin by x� . For this purpose, we
need

Lemma 3.3. Let Y be a separable Banach space and w # L1(B4 , Y). Then
for almost all x� # B4 , we have

1
|B=(x� )| |B=(x� )

&w(x)&w(x� )&Y dx � 0 as = � 0. (3.9)

Proof. This is well known. For the reader's convenience, we give a
sketch. Let [ yj] be a dense subset of Y, then &w(x)& yj&Y # L1(B4). It is
well known that for almost all x� in B4 ,

1
|B=(x� )| |B=(x� )

&w(x)& yj&Y dx � &w(x� )& y j&Y , as = � 0.

As in [S] (p. 11), one can see easily that (3.9) holds for almost all x� in B4 .

We now present the

Proof of Proposition 3.2. Since

:
0�|:|�1

|
B4
|

B4
|

A

|�:u(x, a)| p

|x&x� |n&1 dx dx� da

�C :
0�|:|�1

|
B4
|

A
|�:u(x, a)| p dx da<�,
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we can pick, in view of Lemma 3.3, a point x� , |x� |<1�10, such that

|
B4_A

|u(x, a)| p

|x&x� |n&1 dx da+|
B4_A

|{u(x, a)| p

|x&x� |n&1 dx da<�,

(3.10)
1

|B=(x� )| |B=(x� )
&u(x, } )&u(x� , } )&L1(A) dx � 0, as = � 0+,

and

|
A

|u(x� , a)| p da+|
A

|{au(x� , a)| p da<�.

Set, for 0<t�1,

u(x� , a), Bt�4(x� ), a # A

ut(x, a) :={u \\1&
t

4 |x&x� |+ 2(x&x� ), a+ , Bt�2(x� )"Bt�4(x� ), a # A

u(x, a), x # B4 "Bt�2(x� ),

and u0=u. It follows from Lemma 3.2 that ut # C([0, 1], W1, p(B4_A, N))
satisfies u0=u, ut(x, a)=u(x, a) for |x|�3�20 and all 0�t�1 and a # A,
and u1(x, a)=u(x� , a) for |x|�9�40 and all a # A. Proposition 3.2 follows
immediately.

4. PROOF OF THEOREM 0.2 WHEN dim M�3

As before we consider only the case where �M=<. We introduce a tri-
angulation [T1 , ..., Tl] of M. To simplify the presentation we consider only
dim M=3; the passage to higher dimensions is obvious.

Let [v1 , ..., vk] be the collection of all vertices in the triangulation and
let [e1 , ..., em] be the collection of all edges (i.e., 1-faces) in the triangula-
tion, [ f1 , ..., fn] be the collection of all the 2-faces in the triangulation.

In order to connect u to a constant, Y0 , we proceed step by step. First,
we connect u to some u0 which equals Y0 in some open neighborhood of
the vertices [v1 , ..., uk]. Then, we connect u0 to some u1 which equals Y0

in some open neighborhood of the edges [e1 , ..., em].
Next, we connect u1 to some u2 which equals Y0 in some open

neighborhood of the 2-faces [ f1 , ..., fn]. Finally we connect u2 to Y0 .

Step 0. Connect u to u0 which equals Y0 near all the vertices.
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This is easily done by ``opening'' of maps (Proposition 1.1) and ``connecting''
constants (Proposition 1.4).

Step 1. Connect u0 to u1 which equals Y0 near all the edges.

We proceed by induction. First for a single e1 , recall that u0 equals Y0

near the two end points of e1 . By ``propagation'' (Proposition 1.5) and
``bridging'' (Proposition 3.1 used with l=0 requires p<2��it is only for
Step 1 that we need p<2; for later steps it will suffice to assume p<3, 4,
etc.) we connect u0 to u0, 1 which equals Y0 in an open neighborhood of
e1 _ [all vertices]. To proceed with the induction, we may assume that we
have connected u0 to a map u0, k which equals Y0 in an =-neighborhood of
e1 _ } } } _ ek _ [all vertices]. We now wish to add ek+1 to the collection.
We proceed as in the proof of Cases 1�3 in Section 2. Clearly, there exists
$>0 such that

E & {[$-neighborhood of ek+1]>{ =
2

-neighborhood of �ek+1===<,

where E=e1 _ } } } _ ek _ [all vertices]. By ``propagation'' and ``bridging'' we
end up with a map which equals Y0 near E _ ek+1 . We may do so keeping u0, k

unchanged outside [$-neighborhood of ek+1]"[ =
2-neighborhood of �ek+1].

The resulting map can be taken as u0, k+1 . This completes the induction and
yields a map u1 with the required properties.

Step 2. Connect u1 to u2 which equals Y0 near all the 2-faces.

First, for a single 2-face f1 , recall that u1 equals Y0 near �f1 . By Proposi-
tion 3.1, applied with l=1 (this requires only p<3), we may connect u1 to
some u1, 1 which equals Y0 near f1 _ [all edges]. This is done by the same
=, $ operation as in Step 1; we leave the details to the reader.

Next, we proceed by induction on the number of 2-faces and assume that
we have connected u1 to a map u1, k which equals Y0 in a neighborhood
f1 _ f2 } } } _ fk _ [all edges]. Now we wish to add another 2-face fk+1 , to
the collection. We argue as in the first step of the induction just above. This
completes the induction and yields a map u2 .

Step 3. Connect u2 to Y0 .

Recall that u2 equals Y0 near �Ti for all 1�i�l. Applying Proposi-
tion 1.4 (``Filling'' a hole) successively on T1 , ..., Tl , yields the desired
conclusion.

Here we only use p<3.
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5. PROOF OF THEOREM 0.3

Theorem 0.3 can be reformulated as

Theorem 0.3$. Suppose that, for some non-negative integer k, N is
k-connected, i.e.,

?0(N)= } } } =?k(N)=0,

and

dim M�k+2, 1�p<k+2.

Then W1, p(M, N) is path-connected.

We give in this section the proof of Theorem 0.3$. As before we consider
only the case where �M=<. The proof is by induction on k. For k=0,
this is exactly Theorem 0.2. Assume that Theorem 0.3$ holds up to k, we
will prove that it also holds for k+1. For 1�p<k+2, the path-connec-
tedness of W1, p(M, N) follows from the induction hypothesis. So in the
following, we assume that

k+2�p<k+3 (5.1)

and wish to prove that any u # W1, p(M, N) can be connected to a constant.
Let [T1 , ..., Tl] be a triangulation of M, and let [ f1 , ..., fm] be all

(k+2)-cells of the triangulation.

Step 1. Connect u to some u1 which equals Y0 near f1 _ } } } _ fm .

We proceed by induction on m. First for a single f1 , we ``open'' the map
u at a ``good'' point located near f1 (Proposition 1.1) and then by ``connect-
ing'' constants (Proposition 1.3) and ``propagation'' of constants (Proposi-
tion 1.4) we connect u to some u0, 1 which equals Y0 near f1 . To proceed
with the induction, we may assume that we have connected u to some u0, j

which equals Y0 near f1 _ } } } _ f j . Let E= fj+1 & ( f1 _ } } } _ f j). If E=<,
then, in the same way as we have connected u to u0, 1 , we can connect u
to some u0, j+1 which equals Y0 near f1 _ } } } _ f j+1 . This can be achieved
without changing the values of u near f1 _ } } } _ fj . If E{<, recall that
u0, j=Y0 in the =-neighborhood of E for some =>0. The value of = will be
taken small enough so that the following arguments can go through. Let B=

be the ball of radius = in Rdim M&k&1 centered at the origin, and let

.: B= _Sk+1 � M
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be a diffeomorphism such that for any (x, _) # �B= _Sk+1, [.(sx, _);
0<s<1] is a geodesic parametrized by arclength s; moreover,

�fj+1 /.(B=4 _Sk+1), .([0]_Sk+1)/fj+1 . (5.2)

Note. Notations would be much simpler if we could let .([0]_
Sk+1)=�f j+1 . But such . would not be smooth. What we have done
above is to select a smooth . such that .([0]_Sk+1) is as close to �f j+1

as we wish.

Consider the composition

v=u b .: B5=2 _Sk+1 � N.

By Proposition 3.2 (see also Remark 3.3) we can connect v to v~ in
W1, p(B5=2 _Sk+1, N) such that

v~ (x, _)=v(x, _), \x # B5=2"B4=2 , \_, (5.3)

v~ (x, _)=V(_), \x # B3=2 , \_, (5.4)

for some V # W1, p(Sk+1, N). Moreover,

u~ (P) :={u(P),
v~ b .&1(P),

P # M".(B5=2_Sk+1),
P # .(B5=2 _Sk+1)

has the property

u~ =Y0 in the
=

2
-neighborhood of E. (5.5)

So we have connected u to u~ , which is still Y0 in the =
2-neighborhood of

f1 _ } } } _ fj .
Choose disjoint open sets O1 , ..., Ol /Sk+1 such that each Oi is dif-

feomorphic to a unit ball in Rk+1, and

E/. \B9=3_ .
l

i=1

Oi+/
=

2
-neighborhood of E, (5.6)

dist \. \B=3 _ ,
l

i=1

(Sk+1"O i)+ , E+>=2. (5.7)

Since p�k+2, we know from the Sobolev embedding theorem that V #
W1, p(Sk+1, N)/C0(Sk+1, N). Therefore, by a homotopy, we may assume
that V # C �(Sk+1, N) and

v~ (x, _)=V(_), x # B2=2 . (5.8)
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Indeed this can be achieved as follows. Let 0<$<<=4 and let ' # C �
c (B3=2)

satisfying 0�'�1, '(x)=1 for x # B2=2 , '(x)=0 for x # B3=2 "B(5�2) =2 . Set

V� t(x, _)=P {| V(_&t$'(x)y) \( y) dy= ,

where \( y) is a usual mollifier and P is the projection onto N. Here we
have abused the notation since the integration should be done on Sk+1

instead of on Euclidean space as the notation suggests. Since V is con-
tinuous, for $ small enough, V� t is C� in t, x, and _. Therefore V=V� 0 has
been connected to V� 1 which has the desired properties.

It is not difficult to deduce from (5.4) and (5.6) that

V=Y0 on .
l

i=1

Oi . (5.9)

Since N is (k+1)-connected, there exists V t # C�([0, 1]_Sk+1, N) such
that

V t(_)=Y0 , \0�t�1, _ # .
l

i=1

Oi , (5.10)

V 0=V, (5.11)

V 1=Y0 . (5.12)

The existence of a continuous homotopy satisfying (5.10)�(5.12) follows
from standard results in topology (e.g., Corollary 6.19, p. 244 in [Wh],
applied with X being Sk+1 quotient the union of the O$js), while the exist-
ence of a C� homotopy V t can be achieved by some standard arguments
using mollifiers.

Let \ # C�(B9=3) be such that 0�\�1, \(x)=1 for x # B2=3 , \(x)=0 for
x # B9=3 "B4=3 . We set, for 0�t�1,

v~ t(x, _)=V t\(x)(_), (x, _) # B9=3 _Sk+1.

Clearly this is an admissible homotopy and

v~ 0(x, _)=v~ (x, _), (x, _) # B9=3 _Sk+1, (5.13)

v~ 1(x, _)=Y0 , (x, _) # B2=3 _Sk+1. (5.14)

By defining, for 0�t�1,

wt(P) :={u~ (P),
v~ t b .&1(P),

P # M".(B9=3 _Sk+1)
P # .(B9=3_Sk+1),
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we connect u~ (=w0) to w1. According to the definition,

w1(P)=Y0 \P # .(B2=3_Sk+1),

which implies, in view of (5.3), that w1=Y0 near �f j+1 . As mentioned
earlier, the value of = has been taken very small and therefore (using in par-
ticular (5.7)) along all the homotopies we have made the values in some
open neighborhood of f1 _ } } } _ f j have been preserved as Y0 .

Finally we apply Proposition 3.1 (with l=k+1 and n=dim M) to con-
nect w1 to some u0, j+1 which equals Y0 near f1 _ } } } _ f j+1 . We have
completed Step 1.

Step 2. Connect u1 to Y0 .

If dim M=k+3, we already know from Step 1 that u1=Y0 near
�T1 _ } } } _ �Tl . Applying the technique of ``filling'' a hole (Proposi-
tion 1.3) successively to T1 , ..., Tl , we connect u1 to Y0 . If dim M>k+3,
let [e1 , ..., ei] be all (k+3)-cells of the triangulation and we know from
Step 1 that u1=Y0 near �e1 _ } } } _ �ei . Applying Proposition 3.1 (with
l=k+2 and n=dim M) successively to e1 , ..., ei , we connect u1 to some
u2 which equals Y0 near e1 _ } } } _ ei . Continuing in this way (by induc-
tion), we connect u2 to some udim M&k&2 which equals Y0 near
�T1 _ } } } _ �Tl . Finally, by the technique of ``filling'' a hole, we connect
udim M&k&2 to Y0 . This completes Step 2.

We have verified that Theorem 0.3$ holds for k+1 as well. The proof of
Theorem 0.3$ is complete.

6. EVIDENCE IN SUPPORT OF CONJECTURE 1:
PROOF OF THEOREM 0.4.

Recall the statement of Conjecture 1.

Conjecture 1. Given u # W1, p(M, N) (any 1�p<�, any M, any N),
there exists a v # C�(M, N) and a path ut # C([0, 1], W1, p(M, N)) such
that u0=u and u1=v.

In this section we prove the following special case of Conjecture 1.

Theorem 0.4. If dim M=3 and �M{< (any N and any p), Conjecture 1
holds.

The proof of Theorem 0.4 relies on the following.
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Proposition 6.1. Let M and N be smooth connected compact2 oriented
Riemannian manifold with or without boundary. Assume dim M=3 and
p�1. Then for every u # W1, p(M, N), there exists a continuous path in
W1, p(M, N) connecting u to some v which is C� except possibly at one
point.

Proof of Proposition 6.1. Let u # W1, p(M, N). If p>3, then u #
C0(M, N) by the Sobolev embedding theorem and we can actually take v
to be C� everywhere. If p=3, then W1, p(M, N)/VMO and we can also
take v to be C� everywhere (see the Appendix). On the other hand, if
p<2, then by Theorem 0.2 we can actually take v to be a constant map.
So in the following we assume that

2�p<3. (6.1)

As before we only consider the case where �M=<. We introduce a tri-
angulation of M, denoted by [T1 , ..., Tl]. We divide the proof into three
steps. First, we connect u to some u1 which is W1, p(M, N) & Lip near
�T1 _ } } } _ �Tl . Next, we connect u1 to some u2 which is W 1, p(M, N) &

Lip except possibly at finite points. Finally, we connect u2 to some w which
is W1, p(M, N) & Lip except possibly at one point. Here Lip means
Lipschitz.

Step 1. Connect u to some u1 which is W1, p(M, N) & Lip(near
�T1 _ } } } _ �Tl).

We proceed by induction on l. By ``opening'' u at a ``good'' point in T1

(Proposition 1.1) and ``propagating'' the constant (Proposition 1.5), we
may connect u to some u0, 1 which is constant near T1 . We assume
that we have connected u to some u0, k which is W1, p(M, N) & Lip(near
�T1 _ } } } _ �Tk), and we wish to add �Tk+1 to the collection. Let E=
�Tk+1 & (�T1 _ } } } _ �Tk). If E=<, then, in the same way as we have
connected u to u0, 1 , we easily connect u0, k to some u0, k+1 which is
W1, p(M, N) & C0(near �T1 _ } } } _ �Tk+1). If E{<, recall that u0, k is
W1, p(M, N) & Lip in the =-neighborhood of E for some =>0. The value of
= will be taken small enough so that the following arguments can go
through. Let B==(&=, =) and let

.: B=_S2 � M
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be a diffeomorphism such that for any (x, _) # �B= _S2, [.(sx, _) ; 0<s<
1] is a geodesic parametrized by arclength s; moreover,

�Tk+1 /.(B=4_S2), .([0]_S2)/Tk+1 . (6.2)

Consider the composition

v=u b .: B5=2 _S2 � N.

By Proposition 3.2 (see also Remark 3.3) we can connect v to v~ in
W1, p(B5=2 _S2, N) such that

v~ (x, _)=v(x, _), \x # B5=2"B4=2 , \_, (6.3)

v~ (x, _)=V(_), \x # B3=2 , \_, (6.4)

for some V # W1, p(S2, N). Moreover,

u~ (P) :={u(P),
v~ b .&1(P),

P # M".(B5=2 _S2),
P # .(B5=2 _S2)

has the property that

u~ is W1, p(M, N) & Lip in the
=

2
-neighborhood of E. (6.5)

So we have connected u to u~ , which is still W1, p(M, N) & Lip in the
=
2-neighborhood of �T1 _ } } } _ �Tk . Since W1, p(S2, N)/VMO (here we
use p�2; in fact if p>2, W1, p/C0), we may assume, after making a
homotopy, that V # C�(S2, N) and

v~ (x, _)=V(_), x # B2=2 . (6.6)

Indeed this can be achieved by the same argument as the one following
formula (5.8). Step 1 is complete.

Step 2. Connect u1 to some u2 which is W1, p(M, N) & Lip except
possibly at finite points.

This step can be easily deduced by applying the following lemma
successively on T1 , ..., Tl .

Let B1 denote the unit ball of R3 centered at the origin and let 1�p<3.
Assume that u # W1, p(B1) and u is Lip near �B1 . Define, for 0<t�1,

ut(x)=u~ \x
t + , x # B1 ,
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where

u~ (x)={
u(x),

u \ x
|x|+ ,

x # B1 ,

x # R3"B1

and

u0(x)=u \ x
|x|+ , x # B1 "[0].

Lemma 6.1. ut # C([0, 1], W 1, p(B1)).

Proof. It is elementary.

Step 3. Connect u2 to some w which is W 1, p(M, N) & Lip except
possibly at one point.

Since u2 has at most finitely many singular points and M is connected,
we can easily connect u2 to some u2, 1 which is W1, p(M, N) & Lip away
from a small geodesic ball, say B=(P� ) (it suffices to fix a singular point as
P� and to move smoothly the other singular points close to P� ). Applying
Lemma 6.1 to B2=(P� ), we connect u2, 1 to some w # W1, p(M, N) &

Lip(M"[P� ], N). By Proposition A.4, we connect w to some v # W1, p(M, N) &

C�(M"[P� ], N).

Proof of Theorem 0.4. Let &(Q) denote the unit inner normal at Q # �M.
For some =>0,

.(Q, s) :=expQ (s&(Q))

is a diffeomorphism from �M_[0, 3=] to a neighborhood of �M, where
expQ(s&(Q)) is the exponential map.

By Proposition 6.1 we can connect u to some u1 which is C � except
possibly at one point. Since M is connected, we easily connect u1 to some
u2 # C�(M"[P� ], N) with dist(P� , �M)<=. This singularity can be removed
through a homotopy by pushing �M into M along the normal. Indeed, let
\ # C�(R), &1<\$�0, \({)=1 if {<1, \({)=0 if {>3. Define for
0�t�1,

u t
2(P) :={u2 \Q, s+t=\ \s

=++ ,

u2(P),

P=.(Q, s), (Q, s) # �M_[0, 3=],

P # M".(�M_[0, 3=]).

This homotopy connects u2(=u0
2) to u1

2 # C�(M, N).
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7. EVERYTHING YOU WANTED TO KNOW ABOUT W1, p(M, S1)

The main result of this section is the following special case of Conjecture 1.

Theorem 0.5. If N=S1 (any M and any p), Conjecture 1 holds.

We start with some preliminaries which will be used in the proof. For
n�n$�1, we write Rn=Rn$_Rn&n$ and x # Rn as x=(x$, x") # Rn$_Rn&n$.
Let

D$=[x$ # Rn$; |x$|<1] and D"=[x" # Rn&n$; |x"|<1]

be the unit balls in Rn$ and Rn&n$ respectively.

Lemma 7.1. For n�n$�1 and p�2, let f 0, f 1 # W1, p(D$, S1) with

f 0= f 1 on �D$.

Then there exists F t # C([0, 1], W1, p(D$_D", S1)) such that

F 0(x$, x")= f 0(x$) on D$_D",

F t(x$, x")= f 0(x$) \0�t�1, |x"|>
9

10
, x$ # D$,

F t(x$, x")= f 0(x$)= f 1(x$), \0�t�1, x$ # �D$, x" # D",

F 1(x$, x")= f 1(x$), \ |x"|<
1
10

, x$ # D$.

Moreover if both f 0 and f 1 are smooth in some open set O$ in D$, then F t

is smooth in O$_D".

Proof. Since p�2, it follows from Bethuel and Zheng [BZ] (see
also Bourgain, Brezis and Mironescu [BBM]) that there exists h0, h1 #
W1, p(D$, R) such that

f 0=eih0
and f 1=eih1

.

Set

f t=eith1+i(1&t) h0
, 0�t�1.

Consider a smooth cut-off function \ # C�(R), 0�\�1, \(s)=1 for
|s|�1�10, and \(s)=0 for |s|�9�10. Define

F t= f t\( |x"| )(x$), 0�t�1.

It is easy to see that F t satisfies the desired properties.
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We also need a variant of Proposition 3.2. For =>0, let

A==[a # A; dist(a, �A)>=].

Proposition 7.1. Let A be a smooth compact Riemannian manifold with
boundary, N be a smooth Riemannian manifold with or without boundary,
and let u # W1, p(B4_A, N) where p�1 and B4 is the ball in Rn of radius 4
and centered at the origin. Then for all =>0, there exists a continuous path
ut # C([0, 1], W 1, p(B4_A, N)) such that u0=u,

ut(x, a)=u(x, a), (x, a) # (B4_A)"(B2�3_A=), 0�t�1, (7.1)

and for some Y # W1, p(A, N),

u1(x, a)=Y(a) x # B1�3 , a # A2= .

Moreover, if for some $>0, u is Lip in B4 _(A"A2$), then ut can be taken
to satisfy in addition u1 # Lip(B4_(A"A$), N).

The proof of Proposition 7.1 is a variant of the proof of Proposition 3.2.
We point out one modification, since the others are more obvious. What
we will need is a variant of Lemma 3.2. Let \ # C�(A), 0�\�1, \(a)=1
for a # A2= , \(a)=0 for a # A"A= .

Lemma 7.2. Under the hypotheses of Lemma 3.1, set, for 0<t�1,

f, |x|�t\(a), a # A,

ut(x, a) :={u \\1&
t\(a)

|x| + 2x, a+ , t\(a)<|x|<2t\(a), a # A,

u(x, a), 2t\(a)�|x|�4, a # A,

and u0=u. Then

ut # C([0, 1], W 1, p(B4_A)).

The proof of Lemma 7.2 is a modification of the proof of Lemma 3.2
(and the statement of Lemma 3.1 and its proof). We leave the details to the
reader.

Proof of Theorem 0.5. Let n=dim M. If 1�p<2, the conclusion
follows from Theorem 0.2. On the other hand, if p�n, the conclusion
follows from Proposition A.2. So we only need to consider the case

n�3 and 2�p<n.
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As always, we discuss only the case where �M=<. Let [T1 , ..., Tl] be a
triangulation of M. We will first connect u to some u1 which is Lip near all
[ p]-cells of the triangulation. Then, by induction on the dimensions of
cells ([ p]-cells, ([ p]+1)-cells, ..., (n&1)-cells), we connect u1 to some u~ 2

which is Lip near �T1 _ } } } _ �Tl , and then connect this u~ 2 to some u2

which is C� near �T1 _ } } } _ �Tl . Finally we connect u2 to some
v # C�(M, N).

Step 1. Connect u to some u1 which is Lip near all [ p]-cells.

Let [e1 , ..., em] denote all the ([ p]+1)-cells. We proceed by induction.
As usual, by ``opening'' at a ``good'' point located near e1 and ``propagat-
ing'' the constant, we connect u to some u0, 1 which is constant near e1 .
Assume that we have connected u to some u0, k which in Lip near
�e1 _ } } } _ �ek , we wish to add �ek+1 to the collection. Set E=�ek+1 &

(�e1 _ } } } _ �ek). If E=<, we easily connect u0, k to some u0, k+1 which is
Lip near �e1 _ } } } _ �ek+1 . If E{<, recall that u0, k is Lip in the
=-neighborhood of E for some =>0. The value of = will be taken small
enough so that the following arguments can go through. Let B= be the ball
of radius = in Rn&[ p] centered at the origin, and let

. : B= _S[ p] � M

be a diffeomorphism such that for any (x, y) # �B= _S[ p], [.(sx, y); 0<
s<1] is a geodesic parametrized by arclength s; moreover,

�ek+1 /.(B= 4_S[ p]), .([0]_S[ p])/ek+1 .

By ``opening'' techniques, as in Step 1 of the proof of Theorem 0.3, we may
connect u0, k to some u0, k+1 which is Lip near �e1 _ } } } _ �ek+1 . This
completes the induction and yields a map u1 with the desired property.

Step 2. Connect u1 to some u2 which is C� near �T1 _ } } } _ �Tl .

If n&1=[ p], this step is already achieved in Step 1. Otherwise

n�[ p]+2.

We will only show how to connect u1 to some w which is Lip near all
([ p]+1)-cells since the rest can be established, by induction on the
dimensions of cells, using the same arguments.

Let [e1 , ..., em] denote all the ([ p]+1)-cells. We will first connect u1 to
some ! which is Lip near e1 _ [all [ p]-cells].

We know that u1 is Lip in the =-neighborhood of �e1 _ } } } _ �em for
some =>0. The value of = will be taken small enough so that the following
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arguments go through. Let B= be the ball of radius = in Rn&[ p]&1 centered
at the origin and D be a unit disk in R[ p]+1, and let

. : B=_D � M

be a diffeomorphism such that for (x, y) # �B=_D, [.(sx, y); 0<s<1] is
a geodesic parametrized by arclength s; moreover,

e1 /.(B= 4 _D)/2=4-neighborhood of e1 ,

�e1/.(B= 4 _�D)/2= 4-neighborhood of �e1 .

Let D$/D be a slightly smaller disk such that

e1 /=4-neighborhood of .(B=4 _D$)/4=4-neighborhood of e1 ,

�e1/=4-neighborhood of .(B=4_�D$)/4=4-neighborhood of �e1 .

Applying Proposition 7.1 to u1 b . (modulo another diffeomorphism to
change the radius of balls, etc.), we connect u1 to some u1, 1 which has the
following properties:

u1, 1 is Lip in the
=

2
-neighborhood of �e1 _ } } } _ �em ,

u1, 1 b .(x, y)=V( y) \(x, y) # B3=2 _D$,

where V # W1, p(D$, S1) and V is Lip near �D$. But �D$ is a [ p]-sphere
and, since [ p]>1, ?[ p](S

1)=0, we can pick f 1 # Lip(D$, S1) with

f 1=V on �D$.

Applying Lemma 7.1 (change the radius of balls, etc.) with D"=B3=2 ,
n$=[ p]+1, f 0=V, we connect u1, 1 to some ! which is Lip near e1 _

[�e2 _ } } } _ �em]=e1 _ [all [ p]-cells].
Doing the same successively on e2 , ..., em we connect u1 to some w which

is Lip near all ([ p]+1)-cells.
Next we show by the same argument that we can connect w (already Lip

near all ([ p]+1)-cells) to some map which is Lip near all ([ p]+2)-cells.
Eventually (by induction), we connect u1 to some u~ 2 which is Lip near
�T1 _ } } } _ �Tl , and then, by some mollifier argument (Proposition A.5 in the
Appendix), connect this u~ 2 to some u2 which is C� near �T1 _ } } } _ �Tl .

Step 3. Connect u2 to some v # C�(M, S1).

Let B be a unit ball in Rn and let

.: B � T1
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be a diffeomorphism onto .(B) such that u2 is C� in T1".(B). So u2 b .
is C� on �B. Since ?n&1(S

1)=0 (n�3), we can pick f 1 # C�(B, S1) such
that f 1=u2 b . on �B. Applying Lemma 7.1 with n$=n, f 0=u2 b ., we con-
nect u2 to some u2, 1 which is C � near T1 _ [�T2 _ } } } _ �Tl]. Along the
homotopy the values of u2 outside T1 are preserved, so we make such
homotopies successively on T2 , ..., Tl and end up with some v # C�(M, S1).
Theorem 0.5 is established.

We now turn to the proof of Theorem 0.6. We first recall some notions
already mentioned in the Introduction. Denote by [u] and [u]p the equiv-
alence classes associated with t and tp . We have a well-defined map

ip : [u] � [u]p

going from C1(M, N)�t to W1, p(M, N)�tp .
Recall

Definition 0.1. If ip is bijective, we say that W1, p(M, N) and
C0(M, N) have the same topology.

With this definition we have

Theorem 0.6. For any p�2 and any M, W1, p(M, S1) and C 0(M, S1)
have the same topology.

Proof. Let n=dim M. If n=2, we know the result (Proposition 0.3).
Also, the surjectivity of ip has been proved in Theorem 0.5. So we only need
to show that ip is injective in dimension n�3.

Let u, v # C�(M, S1) be such that, for some p�2,

[u]p=[v]p ,

i.e., there exists ut # C([0, 1], W1, p(M, S1)) such that u0=u and u1=v. It is
known that the connected components of C0(M, S1) and Hom(?1 , (M),
?1(S

1)) have a natural one-to-one correspondence (see, e.g., Corollary 6.20,
p. 244 in [Wh]). Here Hom(?1(M), ?1(S

1)) denotes the set of homomor-
phisms from ?1(M) to ?1(S

1). So, we only need to show that

u
*

=v
*

, (7.2)

where u
*

and v
*

are the homomorphisms from ?1(M) to ?1(S1) induced
respectively by u and v.

Let : # C0(S1, M); we can find ; # C 1(S1, M) such that ;${0 and ; is
path-connected to : in C0(S1, M). We only need to show that u b ; and
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v b ; are in the same path-connected component of C0(S1, S1). This
amounts to verifying that

deg(u b ;)=deg(v b ;), (7.3)

where deg denotes the Brouwer degree (the winding number in this case).
Let B denote the unit ball in Rn&1 centered at the origin and let

.: S1_B � M

be a smooth immersion to a tubular neighborhood of ;(S1) such that
.(S1_[0]) is a ``double'' of ;(S1) (going around twice). This implies that
[;� ]=[;]2 in ?1(M), where ;� =.( } _[0]). Since M is oriented, we can
actually take . with ;� =;.

Clearly, ut b . # C([0, 1], W1, p(S1_B, S1)). Since p�2=dim S1+1, a
degree has been defined in [BLMN] for maps in W1, p(S1_B, S1);
moreover, this degree is invariant under homotopy in W1, p(S1_B, S1).
Therefore the degrees of u b . (=u0 b .) and v b . (=u1 b .) are the same.
This implies

deg(u b ;� )=deg(v b ;� ),

from which (7.3) follows immediately. Thus we have shown (7.2) and
Theorem 0.6 is established.

8. SOME PROPERTIES OF CT(M, N)

First recall some easy facts about ``t'' and ``tp '' which are proved in
the Appendix.

Lemma 8.1. Let u, v # W1, p(M, N) & C 0(M, N), 1�p<�, with utv.
Then utp v.

Note. The converse is not true. However we have

Lemma 8.2. Let u, v # W 1, p(M, N) & C0(M, N), p�dim M, with utp v.
Then utv.

For q�p, we have a well-defined map

ip, q : W1, q(M, N)�tq � W1, p(M, N)�tp .
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Recall the following

Definition 0.2. Let 1<p<�. We say that a change of topology
occurs at p if \0<=<p&1, ip&=, p+= is not bijective. Otherwise we say that
there is no change of topology at p. We denote by CT(M, N) the set of p's
where a change of topology occurs.

We now prove

Proposition 0.4. CT(M, N) is a compact subset of [2, dim M].

Proof. First observe that

ip1, p3
=ip1, p2

b ip2 , p3
, \p1�p2�p3 . (8.1)

Note that if p>1 is not in CT, then there exists 0<=<p&1 such that
ip1, p2

is bijective for all p&=<p1�p2<p+=. Consequently, CT is closed.
By Theorem 0.2, for every 1�p<2, W1, p(M, N)�tp consists of a single
point; therefore

CT(M, N) & [1, 2)=<.

On the other hand, it is clear that

ip=ip, q b iq , \1�p�q<�. (8.2)

Consequently, by Proposition 0.3, ip, q is bijective for all q�p�dim M, i.e.

CT(M, N) & (dim M, �)=<.

An easy consequence of the definition of CT is

Lemma 8.3. Let 1�p�q<� be such that [ p, q] & CT(M, N)=<.
Then ip, q is bijective.

Proof. For every r # [ p, q], there exists ===(r)>0 such that ip1, p2
is

bijective for r&=<p1�p2<r+=. Take a finite covering of [ p, q] by such
intervals and apply (8.1).

Next we recall and prove

Proposition 0.5. If CT(M, N)=< then C 0(M, N) and W1, p(M, N)
are path-connected for all p�1.

Proof. Since CT(M, N)=<, it follows from Lemma 8.3 that

ip, q is bijective \1�p�q<�. (8.3)
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We know from Theorem 0.2 that W1, p(M, N) is path-connected for 1�
p<2. It follows from (8.3) that W1, q(M, N) is also path-connected for
2�q<�. Choosing q>dim M, we deduce, using Proposition 0.3, that
C0(M, N) is also path-connected.

We now present the proofs of assertions (0.1)�(0.6) in the Introduction.

Proof of (0.1). This is a consequence of the fact that W1, p(Bn
1 , N) is

path-connected for all 1�p<�; see Proposition 1.6.

Proof of (0.2). This is a consequence of Proposition 0.3 and Proposi-
tion 0.1.

Proof of (0.4). This is a consequence of Theorem 0.2 and Theorem 0.6.

Proof of (0.5). This is a consequence of Theorem 0.3 (or rather its
equivalent form Theorem 0.3$ at the beginning of Section 5).

Proof of (0.6). It follows from Theorem 0.3 that W1, p(Sn_4, Sn) is
path-connected for all 1�p<n+1. On the other hand, as explained in
Remark 0.1, W1, p(Sn_4, Sn) is not path-connected for all p�n+1.

From the above examples the reader might be tempted to think that
CT(M, N) is either empty or consists of a single point. As we have men-
tioned in the Introduction (see Open Problem), we believe that CT(M, N)
has usually more than one point. Here is a simple example where CT con-
tains exactly two points.

Proposition 8.1.

CT(S1_S2, S1_S2)=[2, 3]. (8.4)

Moreover, let u=(u1 , u2), v=(v1 , v2) # W1, p(S1_S2, S1_S2), then

(a) For p<2, utp v,

(b) For 2�p<3, utp v if and only if

deg(u1( } , y))=deg(v1( } , y)), a.e. y # S2, (8.5)

(c) For p�3, W1, p(S1_S2, S1_S2) and C 0(S1_S2, S1_S2) have
the same topology.

Proof. We first show that

CT(S1_S2, S1)=[2]. (8.6)
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It follows from Theorem 0.2 that W1, p(S1_S2, S1) is path-connected
for all 1�p<2. On the other hand, it follows from Theorem 0.6 that ip is
bijective for all p�2. Therefore, since

iq=ip, q b ip \p�q,

ip, q is bijective for all 2�p�q. This proves (8.6). We next show that

CT(S1_S2, S2)=[3]. (8.7)

It follows from Theorem 0.3 that W1, p(S1_S2, S2) is path-connected
for all p<3. On the other hand, by the Sobolev embedding theorem,
W1, p(S1_S2, S2) and C 0(S1_S2, S2) have the same topology for all
p>3. This proves (8.7).

It is easy to see that W1, p(M, N1_N2)=W1, p(M, N1)_W1, p(M, N2),
and u=(u1 , u2)tp v=(v1 , v2) in W1, p(M, N1_N2) if and only if u1 tp v1

in W1, p(M, N1) and u2 tp v2 in W1, p(M, N2). It follows that

CT(M, N1_N2)=CT(M, N1) _ CT(M, N2).

(8.4) follows from (8.6), (8.7) and the above formula.
Assertion (a) follows from Theorem 0.2. For 2�p<3, it follows from

Theorem 0.6 that u1 tp v1 if and only if (8.5) holds, and, by Theorem 0.3,
u2 tp v2 . Assertion (b) follows immediately. Assertion (c) follows from
Proposition 0.3.

APPENDIX

In this Appendix we present, for the convenience of the reader, some
results which are known to the experts.

Let M and N be compact, connected, oriented, smooth Riemannian
manifolds with or without boundary. We assume that N is smoothly
embedded in some Euclidean space RK, so that, for some $>0, the projec-
tion P of the $-neighborhood of N (in RK) onto N is well-defined and
smooth. Recall that

W1, p(M, N)=[u # W 1, p(M, RK); u(x) # N a.e.], with 1�p<�;

Remark A.1. If N is not compact we need a further assumption.
Namely, we assume that N is smoothly embedded in some Euclidean space
RK, and, for some $>0, the projection P of the $-neighborhood of N (in
RK) onto N is well-defined and the gradient of P (as a map from the
$-neighborhood of N to RK) is bounded in the $-neighborhood.
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We first have

Proposition A.1. For 1�p<�, let u, v # W 1, p(M, N) & C 0(M, N)
satisfying utv. Then utp v.

Remark A.2. It follows from Proposition A.1 that ip is well defined.

Next we have

Proposition A.2. Let u # W1, p(M, N) with p�dim M. Then there
exists ut # C([0, 1], W1, p(M, N)) such that u0=u and ut # C�(M, N) for all
0<t�1.

Remark A.3. It follows from Proposition A.2 that Conjecture 1 holds
for p�dim M.

We also have

Proposition A.3. For p�dim M, let u, v # W1, p(M, N) & C 0(M, N)
satisfy utp v. Then utv.

Remark A.4. It follows from Proposition A.3 that ip : C1(M, N)�t �
W1, p(M, N)�tp is injective for p�dim M.

Remark A.5. Proposition 0.3 in the Introduction follows from
Remark A.2 and Remark A.4.

The proofs of Propositions A.1�A.3 rely on some standard smoothing
arguments. For the proofs of Proposition A.2�A.3 in the case p=dim M,
we also need the Poincare� inequality.

For simplicity we only consider the case where �M=<. We introduce
a family of mollifiers on M as follows. Let \ # C�(Rn), \ radially sym-
metric, 0�\�1, supp \/B1 , �Rn \=1. For 0<=<=1 (=1 being the
injectivity radius of M) and x # M, the function

\� =, x( y)=
1
=n \(exp &1

x ( y)�=)

may not have total integral equal to 1, so we normalize it by setting

\=, x( y)=\� =, x( y)<|M
\� =, x .

For u # W1, p(M, N), let

u=(x)=|
M

\=, xu. (A.1)
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It is easy to establish

Lemma A.1. Given $>0 and u # C0(M, N), there exists =2 # (0, =1),
depending only on $, M, N, \, and the modulus of continuity of u, such that

|u=(x)&u(x)|�$, \0<=�=2 , and \x # M.

Consequently,

dist(u=(x), N)�$, \0<=�=2 , and \x # M. (A.2)

Proof of Proposition A.1. Let ut # C([0, 1], C 0(M, N)) be such that
u0=u and u1=v, and let P be the projection of some $-neighborhood of
N onto N described at the beginning of the Appendix. Since the family has
a uniform modulus of continuity, the =2 in Lemma A.1 can be taken
uniform in 0�t�1.

Define

P(u0
3t=2

) 0�t�1�3,

U t={P(u3t&1
=2

) 1�3<t<2�3,

P(u1
(3&3t) =2

) 2�3�t�1.

Clearly U t # C([0, 1], W1, p(M, N)), U 0=u, and U 1=v.

Proof of Proposition A.2 when p>dim M. It follows from the Sobolev
embedding theorem that u # C0(M, N). Let P be the projection of some
$-neighborhood of N onto N described at the beginning of the Appendix,
and let =2 be the number given in Lemma A.1. Define

ut=P(ut=2
).

Clearly this is a homotopy with the desired properties.
The proof of Proposition A.2 when p=dim M relies on the following

Poincare� inequality: For p=dim M, 0<=�=1 , x # M, u # W 1, p(M, N), we
have

1
= p |

B= (x)
|u&u=(x)| p�C |

B=(x)
|{u| p,

where B=(x) denotes the =-geodesic ball centered at x, the integration and
the gradient { is with respect to the Riemannian metric on M, and the con-
stant C depends only on the manifolds M on N. Consequently we have
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Lemma A.2. For u # W1, p(M, N), p=dim M, 0<=<=1 , we have

sup
x # M

dist(u=(x), N) p�C sup
x # M

|
B=(x)

|{u| p, (A.3)

where C=C(M, N).

Proof of Proposition A.2 when p=dim M. Because of Lemma A.2, =2

can be found so that (A.2) is satisfied. The rest is identical to the proof for
the case p>dim M.

Proof of Proposition A.3. Let ut # C([0, 1], W 1, p(M, N)) such that u0=
u and u1=v. If p>dim M, it follows from the Sobolev embedding theorem
that W1, p(M, N)/C 0(M, N). So ut # C([0, 1], C 0(M, N)), and utv.

For p=dim M, let P be the projection of some $-neighborhood of N
onto N described at the beginning of the Appendix. We observe that
[ut]0�t�1 is a compact subset of W1, p(M, N), so, in view of Lemma A.2,
there exists =2>0 such that

dist(u=(x), N)�$, \0�t�1, 0<=�=2 , x # M.

Therefore the homotopy [U t] in the proof of Proposition A.1 is well-
defined and has the desired properties.

To complete the Appendix, we present the following propositions which
are used in the proofs of Proposition 6.1 and Theorem 0.5 respectively.

Proposition A.4. Let p�1, and let O be an (relative) open subset of
M. Then for every u # W1, p(M, N) & C0(O), there exists ut # C([0, 1],
W1, p(M, N)) such that

ut # C0(O), \0�t�1,

u0=u,

ut # C�(O), \0<t�1.

Proof. For simplicity we only consider the case where �M=<. We
adapt the classical argument of Meyers�Serrin [MS]. Let Oj , j=1, 2, ..., be
a sequence of open subsets strictly contained in O satisfying Oj //Oj+1

and O= _ Oj , and let [�j] j�0 be a smooth partition of unity subordinate
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to the covering [Oj+1"Oj&1 ] j�0 (O0 and O&1 being defined as empty
set).We choose =j , j=1, 2, ..., satisfying

=j�dist(Oj , �Oj+1), j�1,

&(�j u)t=j
&(�ju)&C 0(O)+&(�ju)t=j

&(�j u)&W1, p(O)�
$
2 j , \0<t�1,

(A.4)
where (�j u)t=j

is defined as in (A.1).
Set

vt=:
j

(�ju)t=j
, 0<t�1,

v0=u.

It follows from (A.4) that

&vt&u&C 0(O)�:
j

&(�ju)t=j
&(�j u)&C0�$, (A.5)

and

&vt&u&W 1, p(O)�:
j

&(�ju)t=j
&(�ju)&W1, p�$. (A.6)

For fixed j,

lim
t � 0

(&(�ju)t=j
&(�ju)&C 0(O)+&(�ju)t=j

&(�ju)&W 1, p(O))=0.

So, by the Lebesgue dominated convergence theorem (using (A.4)), we
have

lim
t � 0

(&vt&u&C 0(O)+&vt&u&W1, p(O))=0. (A.7)

Similarly, for every 0<s�1,

lim
t � s

(&vt&vs&C0(O)+&vt&vs&W1, p(O))=0. (A.8)

It follows from (A.5), (A.7) and (A.8) that

ut=P(vt), 0�t�1,

is well-defined and satisfies the desired properties.
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Finally, a variant of Proposition A.4. Let O be an open subset of M and
K be a compact subset of O. For =>0, set K==[x # M; dist(x, K)�=].

Proposition A.5. Let 1�p<�, and let K/O/M be as above. Then
for every u # W 1, p(M, N) & C0(O), there exist =>0 and ut # C([0, 1],
W1, p(M, N) & C0(O)) such that

ut # C0(O) \0�t�1,

ut(x)=u(x) \0�t�1, x # M"K2= ,

u0=u and ut # C �(K=) \0<t�1.

Proof. For =>0 with K3= /O, let ' # C�(M) be a cut-off function with

'={1 x # K2= ,
0 x # M"K3= ,

and let

vt=|
M

\t=, xu, 0�t�1,

where \t=, x is defined above.
Consider

ut=P((1&') u+'vt), 0�t�1,

where P is the smooth projection of the $-neighborhood of N onto N. It
is clear that, for small =, ut is a desired homotopy.
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our Conjecture 1. See their preprint ``Topology of Sobolev Mappings''.
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