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1. INTRODUCTION

Hardy's inequality for a bounded domain 0/RN with Lipschitz bound-
ary asserts that

|
0

|{u| 2�+ |
0

(u�$)2, \u # H 1
0(0), (1.1)

where + is a positive constant and $(x)=dist(x, �0) (see e.g. [7]). The
best constant in (1.1), i.e.

+(0)= inf
u # H1

0 (0)

�0 |{u|2

�0 (u�$)2 , (1.2)

depends on 0. For convex domains +(0)=1�4 ([5, 6]), but there are
smooth bounded domains with +(0)<1�4 ([3, 4, 5]). Brezis and Marcus
[2, Theorem 1] studied the quantity

J0
* = inf

u # H1
0(0)

�0 |{u|2&* �0 u2

�0(u�$)2 , \* # R, (1.3)

and showed that, for a C2 bounded domain 0, there exists a finite constant
**=**(0) such that

{J*=1�4,
J*<1�4,

\*�**,
\*>**.

(1.4)
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Moreover, the infimum in (1.3) is achieved if and only if *>**. In [2]
they also studied the following generalization of (1.3):

J*=J*( p, q, ')= inf
u # H1

0(0)

�0 p |{u|2&* �0 '(u�$)2

�0 q(u�$)2 , \* # R, (1.5)

where p, q, ' satisfy

p, q # C1(0� ), and p, q>0 in 0� ,
(1.6)

' # C0(0� ), and '>0 in 0, '=0 on �0.

Under the normalization

max
�0

q
p

=1, (1.7)

it was proved that (1.4) remains valid in this more general setting, and that
the infimum in (1.5) is achieved if *>** and it is not achieved if *<**.
The question whether the infimum is achieved in the critical case *=**
remained open.

Here we give an answer to this question (under slightly stronger assump-
tions on p, q, ' than in (1.6)). Assume that p, q, ' satisfy

p, q # C2(0� ) and p, q>0 in 0� ,
(1.8)

' # Lip(0� ) and '>0 in 0, '=0 on �0.

We denote 7=�0 and define the following quantity (possibly infinite)

I( p, q)=|
7

d_

- 1&(q(_)�p(_))
. (1.9)

Our main result is the following,

Theorem 1. Assume the weight functions satisfy (1.8) and (1.7). Then,
for *=** the infimum in (1.5) is achieved if and only if I( p, q)<�.

Remark 1.1. Note that in view of (1.7), the assumption p, q # C2(0� )
implies that for N=2 we always have I( p, q)=� and therefore the
infimum is never achieved for *=**. Obviously the same assertion holds
for N=1.

The nonexistence part relies on the construction of a subsolution, follow-
ing the same strategy as in [2]. The proof of existence is new; it uses the
construction of a supersolution in H1, in a neighborhood of the boundary,
which serves to control the behavior of a specific minimizing sequence.
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As mentioned above, if *>** the infimum in (1.5) is achieved by some
function u* # H 1

0(0). It can be easily seen (see [2]) that u* is unique under
the normalization:

u*>0 in 0 and |
0

u2
*=1. (1.10)

In view of Theorem 1, this observation remains valid in the critical case
*=**, provided that I( p, q)<�. Our next result describes the behavior of
u* as *z** in either of the two cases: I( p, q)<� and I( p, q)=�. In fact,
the first case is used in the proof of Theorem 1.

Theorem 2. (i) If I( p, q)<� then u* � u** strongly in H1(0) as
*z**.

(ii) If I( p, q)=� then, as *z**, u* converges strongly in W1, p0(0),
\p0 # [1, 2), to a function u

*
which is the unique positive solution (up to a

multiplicative constant) of

&div( p {u)=
q

4$2 u+
**'
$2 u in 0. (1.11)

Our last result shows how the existence or nonexistence of a minimizer
for *=** are reflected in the differentiability properties of J* at **.

Corollary 1. The function J* is differentiable at ** if and only if
I( p, q)=�. More precisely,

( J**)$+={
0

&\|0

'u2
**

$2 +<\|0

qu2
**

$2 +
if I( p, q)=�,

if I( p, q)<�.
(1.12)

2. PROOF OF THEOREM 1

We first introduce some notations. For ;>0 we denote

0;=[x # 0; $(x)<;], 7;=[x # 0; $(x)=;].

Since 0 is of class C 2, there exists ;0 # (0, 1) such that for every x # 0;0

there exists a unique nearest point projection _(x) # 7. We first assume that
p#1 and we will show later how to treat the general case.
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For the nonexistence part we will argue by contradiction and rely on the
following Proposition which is a variant of Theorem 3 in [2]. Consider the
operator:

Lu=&2u&
q

4$2 u+
'
$2 u. (2.1)

Proposition 2.1. Suppose that q satisfies (1.7) and (1.8) (with p#1)
and that

|
7

d_

- 1&q(_)
=�. (2.2)

In addition, suppose that ' # C(0� ) and that |'|�C$, where C is a constant.
If 0�u # H 1

0(0) and satisfies

Lu�0 in 0, (2.3)

then u#0.

The proof of Proposition 2.1 is by contradiction. Assuming u�0, then
u>0 in 0 by the maximum principle. In the next two lemmas we construct
a positive subsolution v (i.e. Lv�0) which is used as a lower bound for u.
In these lemmas we assume the assumptions of Proposition 2.1, except for
(2.2) which is not needed. We define the operators

Lsu=&2u&
sq

4$2 u+
'
$2 u, \s # (0, 1]. (2.4)

Note that in particular L1=L.

Lemma 2.1. For any s # (0, 1] and x # 0;0
set vs(x)=$(x):s (x) with

:s(x)=(1+- 1&sq(_(x))+$(x))�2, (2.5)

which is well defined since max7 q=1. Then, there exists a constant C>0
such that

|Lsvs |�C |log $| $&1 in 0;0
, \s # (0, 1]. (2.6)

Proof. For simplicity we drop the indices and write v=vs and :=:s .
All the following computations are performed in 0;0

. Note first that

{ log v=(log $) {:+:
{$
$

, (2.7)

180 BREZIS, MARCUS, AND SHAFRIR



hence

|{ log v|2=(log $)2 |{:|2+
:2

$2+2:
log $

$
{: {$, (2.8)

where we used the identity |{$|=1. Next,

2 log v=
2v
v

&|{ log v|2, (2.9)

so that

2v=v(2 log v+|{ log v|2). (2.10)

Similarly,

2 log $=
2 $
$

&|{ log $|2=
2$
$

&
1
$2 . (2.11)

By (2.11) we get

2 log v=2[:(log $)]=:(2 log $)+
2
$

{: 2$+(log $) 2:
(2.12)

=
: 2$

$
&

:
$2+

2
$

{: {$+(log $) 2:.

Finally, plugging (2.8) and (2.12) into (2.10) yields

2v=:(:&1) $:&2+[: 2$+2(1+: log $) {: {$] $:&1

(2.13)
+[(log $) 2:+(log $)2 |{:|2] $:.

Since by (2.5) :(1&:)=(sq b _&$)�4, we infer from (2.13) that

Lsv= 1
4 (sq b _&$&sq) $:&2&[: 2$+2(1+: log $) {: {$] $:&1 (2.14)

&[(log $) 2:+(log $)2 |{:|2] $:+'$:&2.

Note that

{:= 1
4 (1&sq b _+$)&1�2({$&s{(q b _)),

which yields (since q�1 on 7)

|{:|�
C

$1�2 . (2.15)
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In addition

2:=&1
8 (1&sq b _+$)&3�2 |{$&s{(q b _)|2

+ 1
4 (1&sq b _+$)&1�2(2$&s2 (q b _))

gives

|2:|�
C

$3�2 . (2.16)

Combining (2.14), (2.15), (2.16) and using the fact that

|q(_(x))&q(x)|�C$(x)

we obtain

|Lsv|�C($:&1+|log $| $:&3�2+|log $|2 $:&1). (2.17)

Finally, since :�1�2 it follows that

|Lsv|�C |log $| $&1,

where all the constants C are independent of s. K

Lemma 2.2. Set

m#min[q(_); _ # 7] # (0, 1] (2.18)

and let :0 be the unique root of :0(1&:0)=m�8 in (1�2, 1). For any
s # (1�2, 1) let Us=vs+$:0. Then, there exists ; # (0, ;0) such that

LUs<0 in 0; , \s # (1�2, 1). (2.19)

Proof. For ;<;0 small enough we have

L $:0=:0(1&:0) $:0&2&:0 $:0&1 2$&
q
4

$:0&2+' $:0&2

(2.20)

=\m
8

&
q
4+ $:0&2+O($:0&1)�&

m
16

$:0&2 in 0; .

So by (2.6) we infer that, if ; is chosen small enough, then

LUs=Lvs+L $:0�Lsvs+L $:0

�C |log $| $&1&
m
16

$:0&2<0 on 0; , \s # (1�2, 1). K
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Proof of Proposition 2.1. Without loss of generality we may assume
that '�0, because (2.3) remains valid if ' is replaced by |'|. We argue by
contradiction and assume that u�0. Then by the maximum principle u>0
in 0. We fix ;>0 as in Lemma 2.2. Note that for s # (1�2, 1) the function
Us defined in Lemma 2.2 belongs to H 1(0;). Clearly there exists =>0 such
that =Us�u on 7; , \s # (1�2, 1). Since ws .=Us&u�0 on 7; we have
w+

s # H 1
0(0;). By (2.3) and (2.19) we have

Lws�0 in 0; . (2.21)

Testing (2.21) against w+
s yields

|
0;

|{w+
s |2&

q
4 $2 (w+

s )2+
'
$2 (w+

s )2�0. (2.22)

But, by a result of Brezis�Marcus [2, (4.11)] we have also

|
0;

|{w+
s |2�|

0;

q
4 $2 (w+

s )2. (2.23)

Combining (2.22) and (2.23) gives w+
s #0 in 0; , \s # (1�2, 1). Passing to

the limit as s � 1 we find

u�=v1 on 0; , (2.24)

with

v1=$(1+- 1&q b _+$)�2. (2.25)

On the other hand we claim that

v1

$
� L2(0;). (2.26)

By (2.24) this implies that u�$ � L2(0;) which, in view of the assumption
that u # H 1

0(0), contradicts Hardy's inequality (1.1).
In order to establish (2.26) note first that for some c>0 we have (see

(1.4) in [2]):

|
0;

v2
1

$2�c |
7
|

;

0
t- 1&q(_)+t&1 dt d_.

Since

- 1&q(_)+t&- 1&q(_)=
t

- 1&q(_)+t+- 1&q(_)
�t1�2,
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it follows that

t- 1&q(_)+t&1=t- 1&q(_)+t&- 1&q(_)t- 1&q(_)&1

�t- tt- 1&q(_)&1�c0 t- 1&q(_)&1 (with c0=(1�e)2�e).

Hence

|
0;

v2
1

$2�cc0 |
7
|

;

0
t- 1&q(_)&1 dt d_

=cc0 |
7

;- 1&q(_)

- 1&q(_)
d_�cc0; |

7

d_

- 1&q(_)
.

Therefore (2.26) follows from (2.2). K

Proof of Theorem 1, nonexistence part. Suppose I( p, q)=� and
assume by contradiction that a minimizer u for (1.5) does exist. Then we
may assume u>0 in 0 and u solves

&div( p {u)&
q

4 $2 u&
**'
$2 u=0 in 0.

The function u~ =- pu satisfies the equation

&2u~ &
q

4p $2 u~ &
**'
p $2 u~ =\&

2p
2p

+
|{p| 2

4p2 + u~ .

Therefore, by Proposition 2.1, u#0. Contradiction. K

For the existence part of Theorem 1 we need the following lemma.

Lemma 2.3. Assume that q, ' satisfy the assumptions of Proposition 2.1,
except for (2.2). Set v� =v1&$:0 with v1 given in (2.25) and :0 as defined in
Lemma 2.2. Then there exists ; # (0, ;0) such that v� >0 in 0; _ 7; and

&2v� &
q

4 $2 v� &
*'
$2 v� �0 in 0; , \*�**+1. (2.27)

If, in addition,

|
7

d_

- 1&q(_)
<�, (2.28)

then v� # H 1(0;).
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Proof. By (2.20) and (2.6) we obtain

&2v� &
q

4 $2 v� &
*'
$2 v� �

m
16

$:0&2+O( |log $| $&1)�0, \*�**+1,

for $ sufficiently small. This proves (2.27).
Next we can choose ;<;0 such that

:1(x)=(1+- 1&q(_(x))+$(x))�2<:0 in 0; _ 7;

(implying v� >0 in 0; _ 7;).
Finally we show that under the assumption (2.28) we have v� # H 1(0;).

Clearly $:0 # H 1 and thus it suffices to prove that v1 # H1. Using (2.7) we
find

{v1=v1 { log v1=$:1 _(log $) {:1+:1

{$
$ & .

By (2.15) we get

|{v1| 2�C[$2:1&1(log $)2+$2:1&2]�C $2:1&2. (2.29)

From [2, (1.4)] we have for some c>0

|
0;

$2:1&2�
1
c |

7
|

;

0
t- 1&q(_)&1 dt d_

=
1
c |7

;- 1&q(_)

- 1&q(_)
d_<�, (using (2.28)). (2.30)

Combining (2.29)�(2.30) yields that v1 # H 1(0;). K

Proof of Theorem 1 when p#1, existence part. Recall that we assume
that (2.28) is satisfied. We fix a sequence [*n] such that *n<**+1 for all
n, and *nz**. By [2, Theorem 1] we know that for every n, the infimum
+n #J*n<1�4 in (1.3) is achieved by a function vn # H 1

0(0) which satisfies

{
&2vn=

+n q
$2 vn+

*n'
$2 vn

vn>0

in 0

in 0.
(2.31)

We choose the normalization

|
0

|{vn |2=1. (2.32)
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Passing to a subsequence, we may assume that vn ( u weakly in H1(0),
vn � u a.e. in 0, and vn � u strongly in L2(0) for some function u # H 1

0(0).
We are going to prove that vn � u strongly in H 1(0). This implies that
u�0 and thus u is a minimizer for J** .

Note that for each ;>0 the function vn satisfies

&2vn=cn(x) vn in 0"0; , with |cn(x)|�
C
;2 .

Hence, by standard elliptic estimates, we also have

[vn] is bounded in L�
loc(0). (2.33)

Next we fix ;1>0 satisfying the conclusion of Lemma 2.3. By (2.33) we
have, in particular, for some #>0

vn�#v� on 7;1
, \n, (2.34)

with v� as in Lemma 2.3. We next claim that

vn�#v� on 0;1
, \n. (2.35)

Note first that (2.27) gives

&2(#v� )&
+nq
$2 (#v� )&

*n '
$2 (#v� )�\1

4
&+n+ q

$2 (#v� ) in 0;1
. (2.36)

Subtracting (2.36) from (2.31) yields

&2(vn&#v� )&
+nq
$2 (vn&#v� )&

*n'
$2 (vn&#v� )�&\1

4
&+n+ q

$2 (#v� ) in 0;1
.

(2.37)

Set

wn={(vn&#v� )+

0
on 0;1

,
on 0"0;1

.

Note that, by (2.34), wn # H 1
0(0). Testing (2.37) against wn gives

|
0

|{wn | 2&
+nq
$2 w2

n&
*n'
$2 w2

n�&\1
4

&+n+ |
0

q
$2 (#v� ) wn . (2.38)

Since +n=J*n , the left hand side of (2.38) is nonnegative. Therefore wn #0
and (2.35) is proved.
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Since vn � u strongly in L2(0), (2.34) and the dominated convergence
theorem imply that

lim
n � � |

0

qv2
n

$2 =|
0

qu2

$2 .

Testing (2.31) against vn gives

|
0

|{vn |2=|
0

+nq
$2 v2

n+
*n'
$2 v2

n . (2.39)

The right hand side of (2.39) converges to �0 qu2�$2+�0 **'u2�$2=
�0 |{u|2, i.e.

lim
n � � |

0
|{vn | 2=|

0
|{u|2,

and the strong convergence vn � u in H1(0) follows. Finally note that we
actually proved the strong H1-convergence u* � u** as *z** (and not
only of a subsequence). This follows from the simplicity of the eigenvalue
** (as in [2, Remark 3.2]).

Remark 2.1. In the general case when p�1 we argue as follows. Let
*>** and let u* be a minimizer for J*( p, q, '). Then u* satisfies

&div( p {u*)&
J* q
$2 u*&

*'
$2 u*=0 in 0

and hence u~ *=- p u* satisfies

&2u~ *&
J*q
p $2 u~ *&

*'
p $2 u~ *&\&

2p
2p

+
|{p|2

4p2 + u~ *=0. (2.40)

This u~ * satisfies a similar equation to the one satisfied by u* in the case
p#1, except for the last term on the left hand side of (2.40). The argument
used in the existence proof of Theorem 1 can be easily adapted to cover
this case as well. K

3. THE BEHAVIOR OF u* AND J* NEAR **

Proof of Theorem 2. Case (i) of Theorem 2 was actually proved in the
previous section, in the course of the proof of the existence part of
Theorem 1. We thus assume that I( p, q)=�. We shall also assume that
p#1; the general case follows from this case by the argument of
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Remark 2.1. We shall need the following lemma which can be proved by
the same argument as in Theorem 2.7 of [1] and Lemma 8 of [5].

Lemma 3.1. Assume u� # H 1
loc(0;) & C(0;) and u

�
# H 1

0(0) & C(0;)
satisfy u� >0 in 0; and

&2u� +a(x) u� �0 in 0; ,

&2u
�
+a(x) u

�
�0 in 0; ,

for some ;>0 and a(x) # L�
loc(0;). If u� �u

�
on 7;�2 , then u� �u

�
on 0;�2 .

For a sequence *nz** consider the corresponding minimizers [u*n] with
the same normalization as in (1.10), i.e.

u*n>0 in 0 and |
0

u2
*n

=1. (3.1)

Since on 0"0; the function u*n satisfies an equation of the form
&2u*n=cn(x) u*n with |cn(x)|�C�;2, we deduce from (3.1) and standard
elliptic estimates that [u*n] is bounded in L�

loc(0). In particular, for some
#>0 we have u*n�#v� on 7;�2 where v� and ; are as in Lemma 2.3. Applying
Lemma 3.1 gives

u*n�#v� in 0;�2 , \n, (3.2)

which implies

u*n(x)�C $(x)1�2, \x # 0, \n. (3.3)

Next, fix x # 0, set r=$(x)�2 and consider on B1=B1(0) (the unit ball
centered at the origin) the function u~ *n( y)=u*n(x+ry) which satisfies

&2u~ *n=c~ n( y) u~ *n in B1 , with |c~ n( y)|�C.

Using (3.3) and elliptic estimates we infer that

|{u~ *n(0)�C(&u~ *n &L�(B1)+&2u~ *n &L�(B1))�Cr1�2,

which yields by rescaling

|{u*n(x)|�
C

$(x)1�2 , \x # 0, \n. (3.4)

By (3.3) and (3.4) we get that

[u*n ] is bounded in W1, p(0), \p<2. (3.5)
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Consequently there exists a subsequence (still denoted by [u*n]) such that

u*n ( u
*

weakly in W 1, p
0 (0), \p<2. (3.6)

Furthermore, from the Euler�Lagrange equation (2.31) for u*n and
standard elliptic estimates we conclude that [u*n] is bounded in W 2, r

loc(0)
for all r<�. Therefore there exists a subsequence (which we still denote by
[u*n]) such that

u*n � u
*

in C 1
loc(0). (3.7)

In addition, by (3.5) and Ho� lder's inequality,

sup
n |

0;

(uq
*n

+|{u*n |q) dx � 0 as ; � 0, \q<2. (3.8)

Combining (3.7) and (3.8) we conclude that

u*n � u
*

strongly in W 1, p
0 (0), \p<2. (3.9)

In particular u*n � u
*

in L2(0) and consequently u
*

�0 a.e. in 0 and
u
*

�0 (see (1.10)). In addition, u
*

satisfies the equation obtained by
passing to the limit in the Euler�Lagrange equation (2.31) for u*n , i.e.,

&2u
*

&
q

4 $2 u
*

&
**'
$2 u

*
=0 in 0. (3.10)

Therefore, by the maximum principle u
*

>0 in 0.
So far we established the convergence of a subsequence to the limit u

*
.

Next we show that there exists a unique positive solution (up to a multi-
plicative constant) of (3.10). Clearly this implies the full convergence
u* � u

*
in W1, p0(0) as *z**, thus completing the proof of Theorem 2.

Let w be a positive solution of (3.10). Choose ;>0 which satisfies both
the conclusions of Lemma 2.2 and Lemma 2.3. Clearly there exists #0>0
such that

w�#0Us on 7;�2 , \s # (1�2, 1), (3.11)

with the family of subsolutions [Us] given by Lemma 2.2. Applying
Lemma 2.2 and Lemma 3.1 we conclude that

w�#0Us on 0;�2 , \s # (1�2, 1).

Sending s to 1 we infer that

w�#0v� on 0;�2 , (3.12)
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with v� given in Lemma 2.3. On the other hand, passing to the limit in (3.2)
gives

u
*

�#v� in 0;�2 . (3.13)

By (3.12), applied to w=u
*

, combined with (3.13), we obtain that for
some c0>0

c0v� �u
*

�c&1
0 v� in 0;�2 . (3.14)

By (3.12) and (3.14) there exists c>0 such that w�cu
*

on 0. Set

c1= inf
x # 0

w
u
*

.

We claim that w=c1 u
*

. Indeed, if this is not true, then w~ =w&c1 u
*

is a
nontrivial nonnegative solution of (3.10). By the maximum principle w~ >0
in 0, hence by (3.12) applied to w=w~ , and (3.14) we get that there exists
c2>0 such that w~ >c2 u

*
in 0, which contradicts the definition of c1 . K

Proof of Corollary 1. Fix any two values *, &>**. Then u* and u&

satisfy

&div( p {u*)=J*
qu*

$2 +*
'u*

$2 , (3.15)

&div( p {u&)=J&
qu&

$2 +&
'u&

$2 .
(3.16)

Subtracting (3.15) from (3.16) yields that v.u&&u* satisfies

&div( p {v)&J&
qv
$2&&

'v
$2=(J&&J*)

qu*

$2 +(&&*)
'u*

$2 . (3.17)

Testing (3.17) against u& , using integration by parts and (3.16), we obtain

J&&J*

&&*
=&

�0 ('u* u& �$2)
�0 (qu*u& �$2)

. (3.18)

Letting & tend to * in (3.18) we infer that J* is differentiable at * and that

J$*=&
�0 ('u2�$2)
�0 (qu2

* �$2)
. (3.19)

Assume first that I( p, q)=�. Then we must have lim*z** �0 (qu2
*�$2)=�.

Indeed, if not, then for a subsequence *nz**, [u*n] is bounded in H1(0),
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and a further subsequence converges weakly to a minimizer of J** , con-
tradicting Theorem 1. On the other hand, by (1.8) and (3.3) the numerator
is bounded. Thus passing to the limit in (3.19) yields J$**=0 as claimed. If
I( p, q)<�, then by (i) of Theorem 2 we have u* � u** in H1(0) as *z**.
This implies by (1.1) that also

lim
*z** |0

qu2
*

$2 =|
0

qu2
**

$2 ,

so passing to the limit in (3.19) gives (1.12). K
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