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1. Introduction

The theory of degree has a long history which is a cascade of successive generalizations.
Presumably, the oldest notion is the degree of a (smooth) map u from S1 into S1 (S1 =the
unit circle). The degree of u, also called winding number, counts “how many times u covers
its range taking into account the algebraic multiplicity.” More generally, a smooth (say
C1) map u from S1 into C, such that u �= 0 on S1 has a degree which may be computed
through the very classical integral formula

(1.1) deg u =
1

2πi

∫
S1

u̇

u

which measures the “algebraic change of phase” of u as the variable goes around S1 once.
Similarly, if Γ is a simple curve in R2 and u is a smooth map from Γ into S1, then its
degree can be computed as

(1.2) deg(u, Γ) =
1
2π

∫
Γ

u × uτ ,

where × denotes the cross product of vectors in R2 (here S1 is viewed as a subset of R2,
not C) and uτ denotes the tangential derivative of u along Γ.

Starting at the end of the 19th century people realized that the notion of degree
also makes sense in higher dimensions. To simplify the presentation I will consider only
(smooth) maps u from Sn into Sn (= n dimensional unit sphere in Rn+1), but the theory
extends to maps u : X → Y where X and Y are smooth n-dimensional oriented manifolds
without boundary.

Here is the precise definition of degree. Fix any y ∈ Sn which is a regular value of u,
i.e.,

ϕ−1(y) = {x1, x2, . . . , xp}
is a finite set and, for each i, the Jacobian determinant detJu(xi) �= 0. (Recall that,
by Sard’s theorem, almost every y is a regular value.) The degree of u is by definition
the number of solutions of the equation u(x) = y taking into account their algebraic
multiplicity:

(1.3) deg u =
p∑

i=1

sign detJu(xi).
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In principle this number depends on the choice of the regular value y. A remarkable
property is that deg u defined above is independent of y, so that one may talk about
deg u without specifying y.

A very important representation formula, which is the n-dimensional analogue of (1.1)
or (1.2) allows to compute the degree as an integral of the Jacobian determinant:

(1.4) deg u =
1

|Sn|
∫

Sn

detJu

where the Jacobian determinant is computed using geodesic normal coordinates (both in
the domain and the range) and |Sn| denotes the measure (length, area, volume, etc...) of
Sn. For the proof of (1.4) see e.g. L. Nirenberg [1] or H. Brezis and L. Nirenberg [3]. It is
sometimes convenient to observe that

(1.5) det Ju = det(u, ux1 , ux2 , . . . , uxn
)

(recall that u takes its values in Rn+1 and det on the righthand side of (1.5) refers to the
determinant of an (n + 1)× (n + 1) matrix); this follows easily from the fact that |u|2 ≡ 1
and thus u · uxi

≡ 0 for every i. (For example (1.2) corresponds to the form (1.5)).

There is a “cousin” of formula (1.4) where the “surface” integral in (1.4) is replaced by
a “volume” integral in the unit ball Bn+1 of Rn+1. Let ũ be any extension of u to Bn+1

with values into Rn+1, then

(1.6) deg u =
1

|Bn+1|
∫

Bn+1
det Jũ.

(Note that, in (1.6), det refers to the determinant of an (n+1)× (n+1) matrix). It is easy
to pass from (1.5) to (1.6) by writing det Jũ in a divergence form and then integrating by
parts (see e.g. H. Brezis and L. Nirenberg [3]). For example, when n = 1 write

det Jũ = ũx × ũy =
1
2
[
(ũ × ũy)x + (ũx × ũ)y

]
.

Green’s formula allows us to replace the integral over B2 by an integral over S1 which
coincides with (1.2).

The next major step in degree theory came at the beginning of the 20th century, espe-
cially through the work of Brouwer. It was then realized that the C1 assumption about u
used either in (1.3) or (1.4) is not necessary to define a degree. Continuity suffices. The
key observation is the following

Lemma 1. Assume u, v ∈ C1(Sn, Sn) satisfy

‖u − v‖L∞ < 1,

then
deg u = deg v.
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Using Lemma 1 we may now define deg u for a general map u ∈ C0(Sn, Sn). Clearly,
there is a sequence (uj) of C1 maps from Sn to Sn such that uj → u uniformly. Hence
‖uj − uk‖L∞ < 1 ∀j, k ≥ N . By definition we let

deg u = deg uj for j ≥ N.

In this manner every map u ∈ C0(Sn, Sn) has a well defined degree which belongs to
Z. Moreover the degree is stable (i.e., unchanged) under small C0 perturbation:

Property 1. If u, v ∈ C0(Sn, Sn) are such that

‖u − v‖L∞ < 1

then
deg u = deg v.

As a consequence the degree is constant under homotopy, i.e., if H(x, t) ∈ C0(Sn ×
[0, 1], Sn) then

deg(H(· , 0)) = deg(H(· , 1)).

Let us summarize the main properties of the degree (they were discovered during the
first part of this century):

Property 2. If u ∈ C0(Sn, Sn) is such that

deg u �= 0

then
u maps Sn onto Sn.

Property 3 (Borsuk). If u ∈ C0(Sn, Sn) is odd, then

deg u is odd.

Property 4 (Hopf). If u, v ∈ C0(Sn, Sn) are such that

deg u = deg v

then there is a homotopy H(x, t) (as in Property 1) connecting u and v.

A variant of the above degree theory has also been developed for maps u : Ω → Rn

where Ω is a bounded domain in Rn. Given a point y ∈ Rn such that

(1.7) y /∈ u(∂Ω)

one defines deg(u, Ω, y) provided u ∈ C0(Ω, Rn).
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The strategy is the same as above; namely one starts with a smooth map u and a
regular value y. The deg(u, Ω, y) is independent of y provided y stays in a connected
component of Rn\u(∂Ω). This allows to define deg(u, Ω, y) for any y satisfying (1.7).
Next one defines deg(u, Ω, y) for any continuous map u by a variant of Lemma 1. The
two notions above are closely connected; for example if Ω = Bn the unit ball of Rn and
y /∈ u(∂Ω) = u(Sn−1), then

(1.8) deg(u, Ω, y) = deg
(

u − y

|u − y| , Sn−1

)

where the degree on the righthand side of (1.8) refers to the degree of a map from Sn−1

to Sn−1; see e.g. H. Brezis and L. Nirenberg [3].

A very important extension of degree theory to infinite dimensional spaces was
discovered by J. Leray and J. Schauder [1] in the thirties. It requires continuity and some
kind of compactness. It has many applications, in particular, in the study of nonlinear
partial differential equations (see e.g. H. Brezis and L. Nirenberg [3]).

In what follows I propose to describe some recent extensions of degree theory to a class
of maps in finite dimensional spaces, which are possibly discontinuous. This was first
done for Sobolev maps, in some limiting cases of the Sobolev imbedding.

2. Degree theory for maps in the Sobolev class H1(S2, S2)

In 1982 I was working with J. M. Coron on a problem raised by M. Giaquinta and
S. Hildebrandt [1] concerning harmonic maps. Let Ω be unit disc in R2 and consider maps
u : Ω → R3 satisfying the system

(2.1)

⎧⎪⎨
⎪⎩

−Δu = u|∇u|2 in Ω
|u| = 1 in Ω
u = g on ∂Ω.

Solutions of (2.1) correspond to critical points of the functional
∫
Ω
|∇u|2 subject to the

constraint

u ∈ H1
g (Ω, S2) = {u ∈ H1(Ω, R3), |u| = 1 a.e. in Ω and u = g on ∂Ω}

where H1 refers to the usual Sobolev space, g : ∂Ω → S2 is a given (smooth) map. It is
easy to see that (2.1) has at least one solution, namely by considering

Min
u∈H1

g(Ω,S2)

∫
|∇u|2.

Call such a minimizer u0. If g = C is a constant then u0 = C is the only solution of
(2.1). The question of M. Giaquinta and S. Hildebrandt was whether (2.1) has at least 2
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solutions whenever g �≡ Const. In support of their conjecture they considered the special
case

(2.2) g(x, y) = (Rx, Ry, (1− R2)1/2) with 0 < R < 1.

In this case one may write down explicitly two solutions of (2.1), namely

u(x, y) =
2λ

λ2 + r2
(x, y, λ) + (0, 0,−1)

and
u(x, y) =

2μ

μ2 + r2
(x, y,−μ) + (0, 0, 1)

where r2 = x2 + y2, λ =
1
R

+ (
1

R2
− 1)1/2 and μ =

1
R

− (
1

R2
− 1)1/2.

(Note that u and u are simply rescaled stereographic projections from the north and
south pole respectively.)

We did answer positively the question of M. Giaquinta and S. Hildebrandt:

Theorem (see H. Brezis and J. M. Coron [1] and also J. Jost [1]). If g �≡ Const,
then the system (2.1) has at least two solutions.

The starting point in our proof is the observation that the space H1
g (Ω, S2) is not

connected. In fact, it has infinitely many connected components and they are classified
using degree theory. Unfortunately, we cannot use the classical degree theory because
maps in H1 need not be continuous in 2 dimensions.

We were first led with J. M. Coron to investigate the class of maps ϕ ∈ H1(S2, S2) and
try to define their degree. The natural strategy is to consider the integral in (1.4) namely

(2.3)
1
4π

∫
S2

det Jϕ.

Note that the integral is well defined because ϕ ∈ H1 implies det Jϕ ∈ L1 (recall that det
refers to the determinant of a 2 × 2 matrix). To have an interesting degree we would like
to know that the quantity in (2.3) is an integer (in Z). This is a direct consequence of the
following:

Lemma 2 (R. Schoen and K. Uhlenbeck [1]). Given any ϕ ∈ H1(S2, S2) there is a
sequence (ϕj) in C1(S2, S2) such that ϕj → ϕ in H1.

I would like to sketch the proof, because it is quite interesting and plays an important
role in Section 4. Consider a smoothing process, by convolution or just by averaging for
simplicity, say

ϕε(x) =
1

|Bε(x)|
∫

Bε(x)

ϕ(y)dy
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where Bε(x) is a geodesic disc on S2 of radius ε centered at x. Clearly |ϕε| ≤ 1, but ϕε,
in general, does not take its values in S2. If we happen to know that ϕ is also continuous
then ϕε → ϕ uniformly, as ε → 0, and then we may consider

(2.4) ϕε = ϕε/|ϕε|
which has all the required properties. Unfortunately, if ϕ ∈ H1 only, then ϕ need not
be continuous, and (2.4) does not even make sense because (in principle) ϕε could vanish.
The key observation is that ϕε does not vanish (for ε small) and in fact we have

(2.5) |ϕε(x)| −→ 1 uniformly on S2.

The proof of (2.5) relies on Poincaré’s inequality

(2.6)
∫

Bε(x)

|ϕ(y) − ϕε(x)|dy ≤ C|Bε(x)|1/2

∫
Bε(x)

|∇ϕ|

and thus

(2.7)
1

|Bε(x)|
∫

Bε(x)

|ϕ(y) − ϕε(x)|dy ≤ C

[ ∫
Bε(x)

|∇ϕ|2
]1/2

.

Note that, for every y,

|ϕ(y) − ϕε(x)| ≥ dist(ϕε(x), S2) = 1 − |ϕε(x)|
and thus

dist(ϕε(x), S2) ≤ C

[ ∫
Bε(x)

|∇ϕ|2
]1/2

→ 0 uniformly as ε → 0.

In particular, |ϕε(x)| → 1 uniformly and then it is not difficult to prove that ϕε = ϕε/|ϕε|
converges to ϕ in H1.

Remark 1. One may ask a more general question: Is C1(M, N) dense in the Sobolev
space W 1,p(M, N) where M and N are compact manifolds (N has no boundary but M
may have a boundary). If p ≥ dimM , the answer is positive (for every N ) and the proof
is the same as above. If p < dim M , a deep result of F. Bethuel [1] asserts that there is
density if and only if Π[p](N) = 0.

Let me now explain briefly how the H1 degree is used to decompose H1
g (Ω, S2) into its

components. Fix a “reference” map, for example u0 (the absolute minimizer). Given any
u ∈ H1

g (Ω, S2), we “glue” the two maps u and u0 together and define a map ϕ ∈ H1(S2, S2)
by ϕ = (u, u0) (one copy of Ω is identified with S2

+, the upper half-hemisphere, and the
other copy of Ω is identified with S2

−). One may then write

H1
g (Ω, S2) =

+∞⋃
k=−∞

Ek
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where Ek = {ϕ = (u, u0); deg ϕ = k}. These are the connected components of H1
g (Ω, S2).

It is then natural to try to minimize the energy Ω on each Ek:

(2.8) Inf
u∈Ek

∫
Ω

|∇u|2.

It is not clear at all that this infimum is achieved (because a minimizing sequence converges
weakly in H1; the classes Ek are closed for the strong H1 topology, but not for the
weak H1 topology). Using a delicate analysis we were able to prove that the infimum in
(2.8) is achieved at least when k = +1 or k = −1. For more details see H. Brezis and
J. M. Coron [1], H. Brezis [1],[2].

Remark 2. In the case of the special boundary condition g given by (2.2) one can prove
that the infimum in (2.8) is achieved only when k = 0 and k = −1 (and the corresponding
minimizers are given by u and u). It is a beautiful open problem to determine whether,
for this g, u and u are the only solutions of (2.1).

The method described above for H1(S2, S2) easily extends to W 1,n(Sn, Sn) and allows
to define the degree of any map ϕ ∈ W 1,n(Sn, Sn). It is given by the formula

deg ϕ =
1

|Sn|
∫

Sn

det Jϕ.

The fact that deg ϕ ∈ Z is proved as above using the property that C1(Sn, Sn) is dense in
W 1,n(Sn, Sn). Recall that W 1,n(Sn, Sn) is not contained in C0(Sn, Sn). This is again a
limiting case for the Sobolev imbedding.

3. Degree theory for maps in the Sobolev class H1/2(S1, S1)

In 1985 L. Boutet de Monvel and O. Gabber observed that maps in the Sobolev class
H1/2(S1, S1) have a well-defined degree. (Note that the space H1/2 in one dimension is
not contained in C0. Once more this is a limiting case for the Sobolev imbedding!) Their
motivation came from the Ginzburg-Landau model and their argument is presented as
an Appendix in A. Boutet de Monvel-Berthier, V. Georgescu and R. Purice [1] (another
application of the H1/2 degree, also connected to the Ginzburg-Landau theory is presented
in F. Bethuel, H. Brezis and F. Hélein [1]).

The original argument of L. Boutet de Monvel and O. Gabber was the following. If
ϕ ∈ C1(S1, S1), then

(3.1) deg ϕ =
1

2πi

∫
S1

ϕ̇

ϕ
=

1
2πi

∫
S1

ϕϕ̇.

However, this last integral makes sense if one merely assumes that ϕ ∈ H1/2 because
ϕ̇ ∈ H−1/2 and the integral viewed as a scalar product in the duality between H−1/2

and H1/2 has a meaning. One may wonder whether the resulting number is an integer.
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The answer is again positive because C1(S1, S1) is dense in H1/2(S1, S1); the argument is
essentially the same as in the proof of Lemma 2, except that here one uses the fact that

(3.2)
∫

S1

∫
S1

|ϕ(x) − ϕ(y)|2
|x − y|2 dxdy < ∞

to deduce that |ϕε(x)| → 1 uniformly (see Section 4). Recall that (3.2) is one of the
definitions of the space H1/2 (see e.g. R. A. Adams [1]).

There are two other approaches which lead to the fact that maps in H1/2(S1, S1) have
a degree—each one with a different flavor.

First, via the Fourier series. This grew out of a question of I. M. Gelfand. Given
a complex-valued function ϕ on S1 let (aj) denote its Fourier coefficients. Then ϕ ∈
H1/2(S1, C) if and only if

(3.3) ‖ϕ‖2
H1/2 =

+∞∑
j=−∞

|j| |aj|2 < ∞.

On the other hand, if ϕ ∈ C1(S1, S1), its degree, given by (3.1) takes the form

(3.4) deg ϕ =
+∞∑

j=−∞
j|aj|2.

The fact that the sum of the series in (3.4) belongs to Z for any ϕ ∈ H1/2(S1, S1) is
established, as above, via a density argument. It would be good to have a direct and
simple proof of that property. More precisely, if (aj) is a sequence of complex numbers
satisfying (3.3),

(3.5)
+∞∑

j=−∞
|aj|2 = 1

and

(3.6)
+∞∑

j=−∞
ajaj+k = 0 ∀k �= 0,

then
+∞∑

j=−∞
j|aj|2 ∈ Z.

Note that (3.5) and (3.6) correspond to the fact that the map

ϕ(θ) =
+∞∑

j=−∞
aje

ijθ
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takes its values in S1. (Indeed |ϕ| ≡ 1 is equivalent to the property that∫
S1

|ϕ|2eikθ = 0 ∀k �= 0 and
∫

S1
|ϕ|2 = 2π,

which may be written as (3.5) and (3.6).)

In view of the formula (3.4) it is now quite natural that maps in H1/2 have a degree.
But it is far from obvious that maps in C0 have a degree! A general map ϕ in C0(S1, S1)
need not belong to H1/2(S1, S1) and thus the series

+∞∑
j=−∞

|j| |aj|2

may be divergent. If this happens

deg ϕ =
+∞∑

j=+1

j|aj|2 +
−1∑

j=−∞
j|aj|2 = +∞−∞

has no clear meaning. Since deg ϕ makes sense for ϕ ∈ C0(S1, S1), there must be some
kind of cancellation of the two infinite quantities, leaving us with a “principal value”. In
fact it would be very interesting to understand what summation process (if any) may be
used to compute

+∞∑
j=−∞

j|aj|2

for a general ϕ ∈ C0(S1, S1). In particular can one use any of the standard methods, for
example,

lim
n→∞

+n∑
j=−n

j|aj|2

or

lim
r↑1

+∞∑
j=−∞

j|aj|2r|j| ?

Here is still another approach which shows that maps in H1/2 have a degree. It relies
on the characterization of H1/2 as trace space for H1. More precisely, given some ϕ ∈
H1/2(S1, S1) we consider it as a map in H1/2(S1, C) and then we may extend it to the
unit disc B2 in R2 by a map u ∈ H1(B2, C). We then recall the formula (1.6) which here
takes the form

(3.7) deg ϕ =
1
π

∫
B2

det Ju.

Formula (3.7) holds for smooth maps. But, again, we observe that the right hand side in
(3.7) makes sense provided u ∈ H1 and to have such u it suffices to assume that ϕ ∈ H1/2.
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Finally, a density argument, as above, shows that the integral on the right hand side of
(3.7) belongs to Z for any ϕ ∈ H1/2(S1, S1).

This last approach also works in higher dimensions. Suppose ϕ ∈ W s,p(Sn, Sn) for
some fractional Sobolev space. We may extend ϕ inside the unit ball Bn+1 by some
u ∈ W s+1/p,p(Bn+1, Rn+1) and then use the formula (1.6)

(3.8) deg ϕ =
1

|Bn+1|
∫

Bn+1
det Ju.

The integral on the right hand side of (3.8) makes sense when u ∈ W 1,n+1 and so we

may take p = n + 1 s = 1 − 1
p

=
n

n + 1
. We now reach the conclusion that maps

ϕ ∈ W
n

n+1 ,n+1(Sn, Sn) have a degree (in Z). This class falls again in the category of the
limiting Sobolev exponent and it is slightly larger than W 1,n(Sn, Sn) (via the fractional
Sobolev imbedding). For example when n = 2, there is a well-defined degree for maps
ϕ ∈ W

2
3 ,3(S2, S2); this class is a little bigger than the class H1(S2, S2) considered in

Section 2.

At this stage the situation was becoming rather confusing and we decided, with Louis
Nirenberg, to investigate a suggestion of L. Boutet de Monvel and O. Gabber, namely, to
define a degree for VMO maps. Such a degree is not defined via an integral formula
but rather via approximation (in the same manner as one extends degree theory from
C1 to C0). As we shall see in the next Section such a class includes C0 maps as well as
all Sobolev maps in the limiting case of the Sobolev exponent.

4. Degree theory for maps in VMO(Sn, Sn)

Here, and throughout the rest of this paper we present our recent work with Louis
Nirenberg; see H. Brezis and L. Nirenberg [1],[2].

Let us first recall the definition of BMO; this is a celebrated space introduced by F. John
and L. Nirenberg [1].

An integrable function f : Sn → R belongs to BMO if

(4.1) ‖f‖BMO = Sup
B⊂Sn

�

∫
B

|f− �

∫
B

f | < ∞

where the Sup is taken over all geodesic balls on B on Sn, with radius r ≤ 1. Formula
(4.1) defines a semi-norm or a norm on BMO modulo constants. BMO is complete under
this norm. A very useful equivalent norm is given by

(4.2) ‖f‖∗ = Sup
B⊂Sn

�

∫
B

�

∫
B

|f(y)− f(z)|dydz.

In fact its easy to check that

(4.3) ‖f‖BMO ≤ ‖f‖∗ ≤ 2‖f‖BMO.
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Sometimes it is convenient to take the Sup in (4.1) (or (4.2)) over all balls with radius
r ≤ r0; this yields a norm which is equivalent to the original BMO norm.

Clearly,
L∞ ⊂ BMO

and
‖f‖BMO ≤ 2‖f‖L∞ .

But the converse is not true: the well-known example is the log function. More precisely,
fix a point x0 on Sn then

(4.4) f(x) = ζ(x) log |x − x0| ∈ BMO

where ζ is a smooth cut-off function supported near x0. An important inequality, due to
F. John and L. Nirenberg [1] asserts that

BMO ⊂ Lp ∀1 ≤ p < ∞.

More precisely,

(4.5) ‖f− �

∫
Sn

f‖Lp ≤ C‖f‖BMO

where C depends only on p and n. In fact, a sharper form asserts that ec|f | ∈ L1 whenever
‖f‖BMO ≤ 1, where c depends only on n.

It turns out that C0(Sn) is not dense in BMO(Sn). Since we plan to define the de-
gree via approximation by smooth maps, it is essential to deal with maps which can be
regularized. Hence we will work with

VMO(Sn) = the closure of C0(Sn) in BMO(Sn)

i.e., a function f ∈ BMO(Sn) belongs to VMO(Sn) if there is a sequence (fj) in C0(Sn)
such that ‖fj − f‖BMO → 0; without loss of generality, using (4.5), we may also assume
that fj → f in Lp ∀p < ∞ and fj → f a.e.

The space VMO (for functions on Rn) has been introduced by D. Sarason [1] who also
established a useful characterization.

Lemma 3. A function of f ∈ BMO(Sn) belongs to VMO(Sn) if and only if

(4.6) lim
|B|→0

�

∫
B

∣∣f− �

∫
B

f
∣∣ = 0

or equivalently

(4.7) lim
|B|→0

�

∫
B

�

∫
B

|f(y) − f(z)|dydz = 0.
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The fact that f ∈ VMO(Sn) ⇒ (4.6) is easy. Indeed we may write, for any function g,

�

∫
B

∣∣f− �

∫
B

f
∣∣ ≤ ‖f − g‖BMO+ �

∫
B

∣∣g− �

∫
B

g
∣∣.

Given ε we may choose a continuous function g such that ‖f − g‖BMO < ε. Then we may
find a δ > 0 such that

�

∫
B

∣∣g− �

∫
B

g
∣∣ < ε ∀B with |B| < δ.

The converse (i.e., (4.6) ⇒ f ∈ VMO) is more delicate (see D. Sarason [1] or H. Brezis
and L. Nirenberg [1]).

Examples:

1) The function f in (4.4) does not belong to VMO(Sn). However |f |α ∈ VMO(Sn) for
any 0 < α < 1. Hence, there are unbounded functions in VMO. Similarly, the function
ζ(x) log

∣∣ log |x − x0|
∣∣ belongs to VMO(Sn).

2) The Sobolev space W 1,n(Sn) ⊂ VMO(Sn). This follows easily from the Poincaré
inequality

(4.8)
∫

B

∣∣f− �

∫
B

f
∣∣ ≤ C|B|1/n

∫
B

|∇f |

where C depends only on n. From (4.8) we deduce that

(4.9) �

∫
B

∣∣f− �

∫
B

f
∣∣ ≤ C

(∫
B

|∇f |n
)1/n

and we may then apply Lemma 3 to infer that f ∈ VMO.

3) More generally, functions in the fractional Sobolev space W s,p(Sn) with 0 < s < n and
sp = n belong to VMO(Sn) (note that the condition sp = n is limiting for the Sobolev
imbedding). To prove this, it suffices to consider the case 0 < s < 1 (when s ≥ 1,
W s,p ⊂ W 1,n and we are reduced to the previous example).

Recall (see e.g. R. Adams [1]) that a function f belongs to W s,p provided

‖f‖p
W s,p =

∫
Sn

∫
Sn

|f(y)− f(z)|p
|y − z|sp+n

dydz < ∞.

We have, by Hölder,

�

∫
B

�

∫
B

|f(y)− f(z)| ≤ 1
|B|2

(∫
B

∫
B

|f(y)− f(z)|p
)1/p

|B|2/p′

≤ 1
|B|2/p

(∫
B

∫
B

|f(y)− f(z)|p
|y − z|2n

)1/p

(2r)2n/p

≤ C

(∫
B

∫
B

|f(y)− f(z)|p
|y − z|sp+n

)1/p

,
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(since |y − z| ≤ 2r, for y, z ∈ B = a ball of radius r). Applying Lemma 3 once more we
conclude that f ∈ VMO(Sn).

Finally, we say that a vector-valued function u : Sn → Rk belongs to VMO(Sn, Rk) if
all its component are in VMO. If Σ is a closed subset of Rk we say that u ∈ VMO(Sn, Σ)
provided u ∈ VMO(Sn, Rk) and u(x) ∈ Σ a.e. on Sn.

Our main result is the following

Theorem 1. Any map u ∈ VMO(Sn, Sn) has a well-defined degree in Z. If u ∈ C0(Sn, Sn)
or if u belongs to one of the Sobolev classes described in Sections 2 and 3, the new degree
coincides with the degree previously defined.

The properties of this new degree are very similar to the properties of the standard
degree:

Property 1. The degree is stable under small BMO perturbation, i.e., if u ∈ VMO(Sn, Sn)
and (uj) is a sequence in VMO(Sn, Sn) such that

(4.10) ‖uj − u‖BMO → 0

then
deg uj = deg u for j sufficiently large.

As a consequence, the degree is constant under homotopy within VMO, i.e., if H(x, t) ∈
C([0, 1], VMO(Sn, Sn)) then

deg(H(·, 0)) = deg(H(·, 1)).

Property 2. If u ∈ VMO(Sn, Sn) is such that

deg u �= 0

then

(4.11) essR(u) = Sn.

Note that since u is only defined a.e. it does not make sense to talk about the range of
u. Instead one considers the essential range which is the smallest closed set Σ ⊂ Sn such
that u(x) ∈ Σ a.e. on Sn. Property (4.11) says that there cannot be a “hole” in the range
of u, i.e., there is no open ball B in Sn such that u(x) ∈ Sn\B a.e.

Property 3 (Borsuk). If u ∈ VMO(Sn, Sn) is odd, then

deg u is odd

Property 4 (Hopf). If u, v ∈ VMO(Sn, Sn) are such that

deg u = deg v
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then there is a homotopy H within VMO (as in Property 1) connecting u and v.

Our definition of degree for VMO maps is extremely simple. Given u in VMO(Sn, Sn)
set

uε(x) =�

∫
Bε(x)

u, 0 < ε < 1,

where Bε(x) is the geodesic ball on Sn, with center x and radius ε. Note that uε ∈
C0(Sn, Bn+1) and also that

(4.12) 1 − |uε(x)| = dist(uε(x), Sn) ≤�

∫
Bε(x)

|u(y) − uε(x)|dy.

Since u ∈ VMO the right hand side in (4.12) tends to 0 uniformly in x as ε → 0.
Therefore, as ε → 0,

|uε(x)| → 1 uniformly in x

and thus we may introduce, for ε ≤ ε0, the map

uε(x) =
uε(x)
|uε(x)| .

Since uε ∈ C0(Sn, Sn) we may consider

deg uε.

This number is independent of ε for ε ≤ ε0 since we may use ε as a homotopy parameter
to connect uε and uε′ . By definition we let

deg u = deg uε for ε ≤ ε0.

For the proofs of all the above results we refer to H. Brezis and L. Nirenberg [1]. They
are not very difficult, but, still, the VMO degree theory is more subtle than the usual C0

theory. Here are some delicate points:

Remark 3. In the C0 case, Property 1 asserts that if u, v ∈ C0(Sn, Sn) and

‖u − v‖L∞ < 1

then deg u = deg v. In the VMO case such a statement does not hold. More precisely,
there exists no uniform δ > 0 such that if u, v ∈ VMO(Sn, Sn) and

‖u − v‖BMO < δ

then deg u = deg v. In fact we can construct (see Lemma 6 in H. Brezis and L. Niren-
berg [1]) sequences (uj) and (vj) in C1(S1, S1) such that

‖uj − vj‖BMO → 0 as j → ∞
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(even ‖uj − vj‖H1/2 → 0 as j → ∞) and

| deg uj − deg vj | ≥ 1 ∀j.

The exact formulation of Property 1 in the VMO case is:

Given any u ∈ VMO(Sn, Sn) there is some δ > 0 depending on u such that if v ∈
VMO(Sn, Sn) and ‖v − u‖BMO < δ, then deg v = deg u.

Remark 4. As we have already pointed out the degree counts “how many times” ϕ covers
its range (including algebraic multiplicity). If ϕ ∈ C0(S1, S1) then ϕ covers globally S1 at
most a finite number of times; this follows from the uniform continuity: there is a δ > 0
such that |x−y| < δ ⇒ |ϕ(x)−ϕ(y)| < 1 and so the number of times that ϕ may cover S1

is at most of the order of 1/δ. When ϕ ∈ VMO(S1, S1) it may cover S1 infinitely many
times. Here is such an example. Consider a real-valued function f(θ) on [0, 2π] which is
smooth on [0, 2π] except at θ = π, with lim

θ→π
f(θ) = +∞ and f(0) = 0, f(2π) = 2π. We

may construct such an f which belongs to VMO, choosing, for example,

f(θ) = θ + ζ(θ)
∣∣ log |θ − π|∣∣

where ζ is a smooth cut-off function supported near θ = π. Set

ϕ(θ) = eif(θ).

Then ϕ ∈ VMO(S1, S1) (it is easy to see, using (4.7) that the composition L ◦ f of a
Lipschitz map L with a VMO map f lies in VMO). As θ → π, θ < π, ϕ(θ) turns around
S1 infinitely many times in the positive direction. As soon as θ crosses π, ϕ(θ) turns
around S1 infinitely many times in the negative direction! Again, the degree seems to
be a difference of two infinite quantities and we encounter the same kind of cancellation
phenomenon as in Section 3 with Fourier series. Here also the degree seems to be some
sort of “principal value”. It would be very interesting to clarify this point.

5. Further properties of VMO maps in connection with Topology

We present here various remarks and additional results.

A. Homotopy classes and VMO

At this moment it is not clear whether VMO is the “largest” natural class on which
a degree can be defined. What is certain is that bigger classes such as Lp(Sn, Sn), 1 ≤
p ≤ ∞, or BMO(Sn, Sn) do not have a degree. The reason is that the spaces Lp(Sn, Sn),
1 ≤ p ≤ ∞, and BMO(Sn, Sn) are arcwise connected; this is true even if Sn is replaced
in the domain space by a manifold X and in target space by a manifold Y ; see Section I.5
in H. Brezis and L. Nirenberg [1].

When dealing with continuous maps, topologists consider the homotopy classes say
of C0(Sn, Sk). These are the connected components Ci of C0(Sn, Sk). One may ask what
are the connected components of VMO(Sn, Sk)? It turns out that they are of the same



16

type as in the C0 case. More precisely, they are the closures in BMO of the above Ci; see
Section I.5 and Lemmas A.18 - A.24 in H. Brezis and L. Nirenberg [1].

B. Lifting and VMO

Another topic of interest in Topology concerns lifting. For the sake of simplicity let
us consider maps from S1 into S1. The question is whether a map ϕ : S1 → S1 can be
written as

ϕ = eif

for some f : S1 → R. When ϕ ∈ C0(S1, S1), a classical result asserts that there is such
f ∈ C0(S1, R) if and only if deg ϕ = 0. Here is an extension to VMO:

Theorem 2. Assume ϕ ∈ VMO(S1, S1), then ϕ may be written as

ϕ = eif for some f ∈ VMO(S1, R)

if and only if deg ϕ = 0.

The proof, which is much more elaborate than in the continuous case, is presented in
Section I.6 of H. Brezis and L. Nirenberg [1]. It is related to earlier work of R. Coifman
and Y. Meyer [1]. We have more general results in the framework of 3 spaces X, Y, Z and
F is a continuous covering map of Z to Y . Under the natural topological assumptions we
prove that a map ϕ ∈ VMO(X, Y ) can be lifted to Z, i.e.,

ϕ = F ◦ f

for some f ∈ VMO(X, Z).

Remark 5. The question of lifting for Sobolev maps is more delicate than it seems and
has been settled only recently. Here is the problem in a simple situation. Let Ω ⊂ Rn be
a smooth bounded domain and let u ∈ W 1,p(Ω, S1) with 1 ≤ p < ∞. Can one write

u = eif for some f ∈ W 1,p(Ω, R) ?

The answer is positive if p ≥ 2 and negative if 1 ≤ p < 2. This is a result of F. Bethuel
and X. Zheng [1]; a simpler proof, due to P. Mironescu is given in H. Brezis [3].

C. Toeplitz operators and VMO

Let me recall briefly the notion of Toeplitz operators. Consider the Hilbert space
L2(S1, C) and the closed subspace

H2 = {f ∈ L2(S1, C);
∫

S1
f(θ)einθdθ = 0 ∀n = 1, 2, . . .}.

Let P be the orthogonal projection from L2 onto H2. Given a function ϕ ∈ L∞(S1, C)
consider the multiplication operator, defined on L2 by

Mϕf = ϕf.



17

By definition the Toeplitz operator Tϕ, with symbol ϕ, is

T = PMϕ

considered as a bounded operator from H2 into itself.

A very classical result in the theory of Toeplitz operators (see e.g. R. Douglas [1])
asserts that if ϕ ∈ C0(S1, C) and ϕ �= 0 on S1, then Tϕ is Fredholm and

index(Tϕ) = −deg
(

ϕ

|ϕ|
)

.

Here is an extension to VMO.

Theorem 3. Assume ϕ ∈ VMO(S1, C) ∩ L∞(S1, C) satisfies

|ϕ| ≥ α > 0 a.e. on S1.

Then Tϕ is Fredholm and

index(Tϕ) = −deg
(

ϕ

|ϕ|
)

.

Of course, the degree is to be understood in the sense of degree for VMO maps. The
proof of Theorem 3, which is joint with P. Mironescu, is presented in Appendix 2 of
H. Brezis and L. Nirenberg [2]. It uses a deep result: the Fefferman-Stein duality of H1

and BMO (see C. Fefferman and E. Stein [1]).

6. Degree theory for VMO maps on domains

As we have mentioned in the Introduction there is a classical notion of degree for
continuous maps on domains of Rn. Such a concept can be extended to VMO maps. We
have first to define precisely what is meant by BMO and VMO on domains.

Let Ω ⊂ Rn be an open (connected) bounded set. A function f ∈ L1
loc(Ω) belongs to

BMO(Ω) provided

(6.1) ‖f‖BMO = Sup
B⊂Ω

�

∫
B

∣∣f− �

∫
B

f
∣∣ < ∞,

where the Sup in (6.1) is taken over all balls B whose closure is contained in Ω. This
notion depends (in principle) on the choice of norm in Rn—a different norm gives rise to
a different geometry of balls. A deep result of P. Jones asserts that two different norms on
Rn yield two equivalent BMO norms. This is proved in H. Brezis and L. Nirenberg [2],
using the methods of P. Jones [1]. The main idea is to show that if in (6.1) we consider

balls B “well-inside” (i.e., B = Br(x) with r ≤ 1
2
dist(x, ∂Ω)) we obtain a smaller norm,

which is equivalent to the BMO norm.
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Now VMO(Ω) is the closure of C0(Ω) for the BMO norm. The analogue of Lemma 3
holds provided B ⊂ Ω. As above, the Sobolev space W s,p(Ω) ⊂ VMO(Ω) when 0 < s < n
and sp = n.

We wish to define
deg(u, Ω, y)

for a map u ∈ VMO(Ω, Rn+1) such that y /∈ u(∂Ω). This last condition does not make
sense since VMO maps do not, in general, have a trace on the boundary. We make instead
the following assumption:

(6.2)

⎧⎨
⎩

there exist constants δ > 0 and r0 > 0 such that

�

∫
Br(x)

|u(z) − y| ≥ δ ∀x ∈ Ω with r =
1
2
dist(x, ∂Ω) ≤ r0.

Note that, if u ∈ C0(Ω, Rn+1), assumption (6.2) is equivalent to the condition that
y /∈ u(∂Ω). Of course, we could also have made the stronger assumption that

(6.3) |u − y| ≥ δ a.e. on some neighborhood of ∂Ω.

However, such a condition would be too restrictive in our framework. For example, if
u ∈ W 1,n, let ϕ = u∣∣∂Ω

and assume that

|ϕ − y| ≥ γ > 0 a.e. on ∂Ω,

then (6.2) holds, but (6.3) does not hold.

Our main result is

Theorem 4. Assume u ∈ VMO(Ω, Rn+1) satisfies (6.2) then

deg(u, Ω, y) is well-defined (in Z).

This new degree has all the properties that one expects for a degree. Here are some:

Property 1. Assume u ∈ VMO(Ω, Rn+1) and (uj) ⊂ VMO(Ω, Rn+1) are such that uj → u
in BMO and in L1

loc, and (6.2) holds for u and for uj uniformly in j (i.e., with the same δ
and r0). Then

deg(uj , Ω, y) = deg(u, Ω, y) for j large.

Property 2. Suppose u ∈ VMO(Ω, Rn+1) satisfies (6.2) and deg(u, Ω, y) �= 0. Then
y ∈ essR(u) and more precisely

Bδ(y) ⊂ essR(u).

In the classical theory, with u ∈ C0(Ω, Rn+1), assuming also Ω is smooth, we have

(6.4) deg(u, Ω, y) = deg
(

u − y

|u − y| , ∂Ω, Sn+1

)
.
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Formula (6.4) does not make sense for maps u in VMO—again because they do not have
a trace on ∂Ω.

To get around this difficulty we were led to introduce a new class of functions f in
VMO(Ω) which does have a trace ϕ on the boundary, with ϕ in VMO(∂Ω). Our definition
is the following: Let ϕ be a function in VMO(∂Ω). Let ϕ̃ be the extension of ϕ in a
neighborhood of ∂Ω, constant on normals.

Definition. A function f ∈ VMO(Ω) belongs to VMOϕ(Ω) if

lim
r→0

r= 1
2dist(x,∂Ω)

�

∫
Br(x)

|f − ϕ̃| = 0.

There are many natural examples of functions in VMOϕ. Any function f in W 1,n

belongs to VMOϕ where ϕ = trace of f (in the sense of Sobolev spaces). The harmonic
extension in Ω of a function ϕ ∈ VMO(∂Ω) belongs to VMOϕ(Ω). Etc. . . . . For such
maps we have

Theorem 5. Assume u ∈ VMOϕ(Ω, Rn+1) and

|ϕ − y| ≥ δ > 0 i.e., on ∂Ω.

Then (6.2) holds and

deg(u, Ω, y) = det
(

ϕ − y

|ϕ − y| , ∂Ω, Sn−1

)
.

The proof is given in Section II.4 of H. Brezis and L. Nirenberg [2].
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