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1. Introduction. In this paper we are concerned with the relations between the
existence of global, classical solutions of the evolution equation

u, -~u = g(u)

u=O

u(O) = "0

in

(1)

in (0,00) x Q,

on aQ,

in n,

and the existence of weak solutions of the stationary problem

in Q,

aQ

-6u = g(u)

u=O (2)
on

Here, andthroughoutthepaper,.Q c ]RN is a smooth, bounded domain andg : [0,00) -+
[0. 00) is a C 1 convex, nondecreasing function. For some results, we will also assume

that there exists Xo ~ 0 such that g(xo) > 0 and

ds
(3)< 00.

1000 g(s)

Solutions u of (1) and (2) are always assumed to be nonnegative. The initial condition
Uo is always assumed to be in LOO(Q) and Uo ~ 0, so that a classical solution of (1)
exists on a maximal interval (0, Tm).

By a weak solution of (2), we mean the following.

Definition 1. A weak solution of (2) is a function U E L/(Q), U ~ 0, such that

g(u)8 E L1(Q). (4)
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where 8 denotes the function distance to the boundary,

D(X) = dist(x, an),

and

for all ~ E C2(Q) with ~ = 0 on ag. (Note that the second integral makes sense since
1~(x)1 ~ C8(x) for all x E g.)

Our first result is the following.

Theorem 1. Assume (3). If there exists a global, classical solution of (1) for some
Uo E LOO(.Q), Uo ?:: 0, then there exists a weak solution of(2).

Remark 1. Theorem I is quite surprising since we do not assume any bound (as t ~ 00)
for the global solution u.

Remark 2. The existence of a global solution of (I) does not, in general, imply the
existence of a classical solution of (2). In many examples, the existence of a weak
solution of (2) implies the existence of a classical solution of (2). However, there are
situations where the stationary problem admits no classical solution, and still there exists
a global, classical solution of the evolution equation. See Theorem 2 and Remark 5.

An obvious consequence of Theorem I is the following:

Corollary 1. Assume (3). If there is no weak solution of(2), then for any initial value
Uo E L 00 (Q), Uo ~ 0, the solution of (1) blows up in finite time.

Remark 3. There are very sharp results concerning the existence or nonexistence of
weak solutions of (2). See properties a) and d) below and Corollary 2.

There is a converse of Theorem 1, which does not require assumption (3).

Theorem 2. If there exists a weak solution w of (2). then for any Uo E L 00 (Q) with

0 ~ Uo ~ w. the solution u of(1) with u(O) = Uo is global.

Remark 4. If w is a classical solution of (2), then the existence of a global solution of (1)
follows immediately from the maximum principle. On the other hand, if w f/ LOO(Q),
then the conclusion is far from obvious. Indeed, suppose that the solution blows up in
finite time Tm. Clearly u(1, x) ~ w(x) on (0, 7;n) x Q, but this estimate in itself does
not prevent II u (1) II LX from blowing up in finite time. It is well known that u (t, x) can
converge to a blow-up profile u(Tm' x), which may be finite everywhere except at one

point (see e.g. Weissler [16]).

A basic ingredient in the proof of Theorem 2 consists in proving that some "pertur-
bations" of (2) have classical solutions if (2) has a weak solution. A typical result in

that direction is the following:
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Theorem 3. lfthere exists a weak solution W of (2), then, for every e E (0, 1), there
exists a classical solution WE of

-AwE = (1 -e)g(wE) in g,
(7)

WE = 0 on ag.

Theorem 3 allows us to sharpen some well-known results concerning the problem

-Au = Ag(U) in g,
(8)

u = 0 on a g .

Here we assume in addition that

(9)g :jt g(O).g(O) > 0 and

We recall that there exists 0 < ,\ * < 00 such that:

a) For every 0 < A < A * equation (8) has a minimal, positive classical solution

U(A), which is the unique stable solution of (8); stability means that

A) (-~ -Ag'(u(A))) > O.

(There may exist, for some values of J.. E (0, J.. *), one or many other solutions,

which are all unstable.)

b) The map J.. ~ u(J..) is increasing.

c) For A > A *, there is no classical solution of (2).

d) For A = A *, and if

~ ~ 00, (10)
u u-oo

then there is a weak solution u* = lim u(J..) of (8).
)..t)...

For all these results, we refer to I.M. GeI'fand ([7]), H.B. Keller and D.S. Cohen ([10]),
H.B. Keller and J. Keener ([11]), M.G. Crandall and P.H. Rabinowitz ([3]), H. Brezis

and L. Nirenberg ([2]).
Property d) is not absolutely standard; see Lemma 5.

Remark 5. The solution u* is sometimes a classical solution. For example when
g(u) = ell and N :::: 9 or when g(u) = (1 + u)P and N :::: 10 (see F. Mignot and J.-
P. Fuel, [14]). However, there are important cases where there is no classical solution
at J.. = A *-for example when Q is the unit ballofIRN with N ~ 10 and g(u) = ell; in
this case A * = 2(N -2) and u*(x) = Iog( ~) (see 0,0. Joseph and T.S. Lundgren [8]).

The main novelty is:

Corollary 2. Assume (9). If).. > ).. *, then there is no weak solution of (8).

This is an obvious consequence of Theorem 3 applied to the function )..g, and the

characterization of ).. *.

Remark 6. A result similar to Corollary 2 was obtained by Gallouet, Mignot and
Puel ([6]) in the case g(u) = ell (and for a stronger notion of weak solution).

Putting together Theorems 1, 2 and 3, we can now state the following.
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Corollary 3. Assume (3) and (9), and consider the (classical) solution u of

u, -l:!.u = Ag(U)

U=o
U(O) = 0

n,
an,
Q.

in

on

in

If A ~ A *, then u is global. If A > A *, then u blows up in finite time.

Remark 7. It is somewhat surprising that one finds the same dividing line A * in the

stationary problem and in the evolution problem.

Starting with the celebrated papers ofH. Fujita ([4,5]), dealing with the case g(u) =
eu, a number of authors have investigated the question of blow up in finite time or the
existence of a global solution for (11). A. Lacey ([ 12]) had established that the solution
of (11) blows up in finite time for A > A * under some additional assumption: either

u* E L OO(.{2) or.{2 is a ball. H. Bellout ([1]) had reached the same conclusion, with the
additional assumption that (~)" ~ O. On the other hand, A Lacey and D. Tzanetis ([13])
proved that for A = A * the solution of (11) is global when Q is a ball and Uo ~ u*,

Uo E LOO(Q) and Uo is spherically symmetric (and also for general domains but under
various restrictive conditions).

2. Proof of Theorem 3.
equation.

We begin with a lemma concerning the linear Laplace

Lemma 1. Given f ELI (Q, 0 (x )dx), there exists a unique VEL I (Q) which is a weak

solution of
-t:.v = f
V,an = 0,

in Q,

in the sense that
-lv~~ = lf~,

for aUi; E C2(Q) with i; = 0 on aQ. Moreovet;

IlvllLI ~ CllfIlL'(o,8(x)dx),

for some constant C independent of f. In addition, if f ? 0 almost everywhere in Q,
then v ? 0 almost everywhere in Q.

Proof. The uniqueness is clear. Indeed, let VI and V2 be two solutions of (12).
v = v I -V2 satisfies

L V~I; = 0,

for alII; E C2(Q) with I; = 0 on aQ. Given any ~ E V(Q) let I; be the solution of

Then

in Q,6S = cp

S'iJQ = O.
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It follows that

1 

vcp = 0

Since ~ is arbitrary, we deduce that u = o.
For the existence, we may assume that f ~ 0 (otherwise we write f = f+ -I-).

Given an integer k ~ 0 set fk(X) = min{f(x), k}, so that fk -+ fin L1 (Q, {;(x)dx).k-oo
Let Uk be the solution of

-~Uk = Ik

Uk = 0

in ~~,

on BQ.
(15)

The sequence (Vk)k~O is clearly monotone nondecreasing. It is also a Cauchy sequence
in L 1 (Q) since

where 1;0 is defined by
-~I;o = 1

1;0 = 0

in ~2,

on oS"2
(16)

Hence
L IVk -vii ~ c L !

Passing to the limit in (15) (after multiplication by ~), we obtain (13). Finally, taking
l; = l;o in (13), we obtain

Ilk 

-IlI5(x) dx.

IlvllLI = 1 v = 1 f~o ~ CllfIlL'(n.8(x)dx).

and (14) follows. 0

OUf next lemma is a variant of Kato's inequality (see [9]).

Lemma 2. Let / E L1(Q, 8(x)dx), and let u E L1(Q) be the weak solution 0/(12).
Let <I> E C2(IR) be concave, with <1>' bounded and <1>(0) = o. Then

-~<I>(u) ~ <I>'(u)/.

in the sense that

-L <I>(u)6.~ ~ L <I>'(u)fi;,

for alii; E C2(Q), ~ ~ 0, such that ~ = 0 on an.

Proof. Consider (fn)n~O c V(Q) such that fn ~ fin L1 (n,l5(x)dx). Let Un be the
n-+oo

solution of
g,

an.
-l:!oun = In

Un = 0

in

on
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It follows from Lemma I that Un ~ U in L1 <Q). On the other hand we have
n-oo

6<1> (un) = <1>'(un)6un + <1>"(un)IVunI2 :5 <1>'(un)6un = -<1>'(Un)!no

Therefore,

for all ~ E C2(Q), ~ ~ 0 ~uch that ~ = 0 on 8Q; and so the result follows easily by
letting n --.". 00. 0

Lemma 3. Let "ill" be a weak super-solution of (2), in the sense that "ill" ELI (Q), "ill" ~ 0,
g(w)11 E L1 (Q), where 11 is given by (5), and

for all S E C2(Q), s ?: 0 with s = 0 on an. Then there exists a weak solution w of (2)
with 0 ~ w ~ w.

Proof. We use a standard monotone iteration argument: define the sequence (Wn)n?;l

by
-l'::.Wn+l = g(Wn)

Wn+l = 0

in .Q,

a.Q,on

for n ~ 1, starting with WI = w. It is easy to check that 'ill" = WI ~ W2 ~ ...~ o.
Indeed, it suffices to prove that W I ~ W2 ~ 0, and the rest follows by induction, using
Lemma 1. We have

1 (WI -WV( -.6.1;) ~ 0,

for all l; E C2(Q), l; ~ 0 with l; = 0 on 8Q, Given ~ E V(Q), ~ ~ 0, let l;rp be the
solution of

in n,
an.

-£::.l;rp = cP

l;rp = 0 on

Taking ~ = ~rp in (18), we obtain

L (WI -W2)tp ?:. o.

Since cp ~ 0 is arbitrary, we deduce that W2 ~ WI almost everywhere in Q. On the other
hand, it follows from Lemma I that W2 ~ O.

Since the sequence (Wn)n~1 is nonincreasing, it converges to a limit U E LI (Q),
which is clearly a weak solution of (2). 0

An essential ingredient in the proof of Theorem 3 is the following.
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Lemma 4. Assume g(O) > 0 and set

(U dsh(u) = 10 gw'

for all u ~ O. Let g be a Cl positive function on [0,00) such that g ~ g and g' ~ g'.
Set

(U dsh(u) = 10 gw'

<I>(u) = ;;-1 (h(u»

for all u ~ O. Then

(i) 4>(0) = OandO.:5 4>(u).:5 uforallu::: O.

(ii) 4> is increasing, concave and 4>' (u) .:5 1 for all u ~ O.

(iii) If h(oo) < 00 and g ~ g, then 4>(00) < 00.

Proof. Properties (i) and (iii) are clear. We have

<I>'(u) = ",>0,g(cI>(u»

g(u)g'«I> (u))<I>'(u) -g«I>(u»)g'(u)<f>"(u) =
.g(ur

g«I>(u»(g'«I> (u» -g'(u))

g(U)2

Since g'«I> (u)) ~ g'«I>(u)) ~ g'(u), it follows that <1> is concave. Hence (ii). 0

Proof of Theorem 3. If g(O) = 0, then 0 is a weak solution of (7), so we assume
g(O) > O. We consider two cases.

Case 1. Suppose
roo ds

10 g(s)

Let v = <1>(w), with the notation of Lemma 4, where g = (1 -e)g. It follows from
Lemmas 2 and 4 that v E LOO(Q) is a super-solution of (7). The result follows from
Lemma 3.

Case 2. Suppose

-<00.

Let g = (1 -8)g, and consider the function <t> introduced in Lemma 4. Set

VI = <I>(w).

~!~ 100 ds
-=00.

0 g(s)



80 H. BREZIS. T. CAZENAVE, Y. MARTEL, AND A. RAMIANDRISOA

w- VI

g(VI)
h(w) ~ h(v() + (w -vl)h'(vl) = h(v.) +

Since h(vl) = (1 -s)h(w), we deduce that

w-v,
h(w)

w<-< C-h(w) -(1 + w),eg(Vt) ~

so that in particular, g(VI) E L1 (Q). Now, we observe that by Lemma 2, VI is a weak
super-solution of the equation

-~UI = (1 -e)g(ul)

Ul =0

.Q,

a.Q

In

on

Therefore, it follows from Lemma 3 that there exists a weak solution U I of (19) such that
O::s u, ::s VI. In particular, we have 0 ~ g(ul) ::s g(vl) E L1(Q), so that UI E LP(Q),
for all p ? 1 such that (see e.g. Stampacchia [15])

(p ~ 00 if N = 1, P < 00 if N = 2).
N

p < N-=-2

By the same construction, we find a solution u2 of the equation

m

g,

ag,

-~U2 = (1 -e)2g(U2)

U2 = 0 on

such that 0 ~ U2 ~ U, and g(U2) ~ C(I + Ut). In particular, g(U2) E LP(Q), for all
p ~ I satisfying (20). This implies that U2 E L'(O), for all r ~ I such that r < 6
(r ~ ooifN = 1,2,3,r < ooifN =4). By iteration, we find that ifk(N) = (N/2]+I,
then the solution Uk of the equation

-L\Uk = (1 -E)k g(Uk)

Uk = 0

In

g,

ag,on

belongs to LOO(Q). Since e E (0, 1) is arbitrary, this completes the proof. 0

3. Proof of Theorem 1. We assume g(O) > 0, for otherwise w = 0 is a weak
solution of (2). Furthermore, we may also assume that Uo = 0, so that u ~ 0 and u, ~ 0

for all t ~ O.
Next, observe that g' (u) ~ +00 by (3), so that there exists a constant M > 0 such

u-+oo

that

for s>M-,
1

g(s) -AlS ?:. 2g(s)
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where AI is the first eigenvalue of -~ in HJ (.Q). Let cp E C2(Q) with CPlan = O. It
follows from (1) that

We first claim that
sup { g(U)cpl ::5: (1 + Al)M
t~O JQ

where M is as in (22) and 'PI is the first eigenfunction of -~ in HJ (.Q) such that
In ~I = 1. Indeed, taking ~ = ~l in (22), we find

~ L u(t)'P' + A

1 

U(t)<P1 = 1 g(u(t))<p) ~ g (1 u(t)<p)

by Jensen's inequality. If there exists to ?:. 0 such that 111 U(tO)~1 > M, then it follows
from (24) and (21) that

~ [U(t)CPl ?:. ~ g( [ U(t)CPI
dt in 2 in

for 1 ?:; 10. which is absurd by (3); and so

for all 1 :::: O. Integrating (24) on (1,1 + 1) and since Ur :::: 0, we find

l g(u(t»cp, :5: f'+'l g(u)cp, :5: l u(t + I)cp, + AI f'+

:5: (I + A,)M,
LUCP'

hence (23).
We next claim that there exists K such that

sup Ilu(t)IILI ~ K
t~O

Indeed,let ~o be the solution of(16). Taking rp = ~o in (22) and integrating on (t, t + I),
we find

and (25) follows by applying (23).
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By monotone convergence, it follows from (25) and (23) that u(t) has a limit w in
L1 (Q) and that g(u) converges to g(w) in L1 (Q, 8(x)dx), as t -+- 00. Let cP E C2(Q),
CPlaQ = O. Integrating (22) on (t, t + I), we obtain

L 

UqJ ]:+1+['+

Letting t ~ 00, we find

L w(-~<p) = L g(w)<p.

Therefore, w is a weak solution of (2). 0

We now give an alternative proof of Theorem 1 in the spirit of the proof of Theorem 3.
It makes use of the following lemma.

Lemma 5. Assume (9), and let A * be the supremum of all A > 0 such that (8) has a
minimal, positive, classical solution u (A). Then A * < 00. If furthermore (10) holds,

then limAtAo U{A) = u* is a weak solution of{8) with A = A *.

Proof. We first observe that by (9) and convexity of g, there exists s > 0 such that
g(u) ?: su, for all u ~ 0; and so

-f::.u(J..) ~ J..EU(J..).

Let A 1 be the first eigenvalue of -~ in HJ (!2), and let ~l be a corresponding eigenvector.
Multiplying (26) by ~l, we see that At: :5 AI; and so, A. :5 ~. If (10) holds, then there
exists C such that g(u) ~ ~u -C, for all u ~ O. Multiplying (8) by ~1, we obtain

A L g(U(A»CPl = A

Letting A t A *, we deduce that

lim (g(U(A))CP) < 00.
AtA. JQ

Multiplying now (8) by the solution SO of (16), we obtain

1 

u().) = ). 1 g(U().»l;o ~ C;ll g(U().»CPI,

so that U (A) is bounded in L I (Q) by (27). Since U (A) is increasing in A, it follows that
U(A) has a limit u* E LI (Q) and that g(U(A» converges to g(u*) in L I (Q, h'(x) dx). It

follows easily that u* is a weak solution of (8) with A = A *. 0
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Alternative proof of Theorem 1. We may assume as above that g(O) > 0 and Uo = O.
Given 0 < e < 1, let g = (1 -e)g and let <I> be as in Lemma 4. Set VE(t) = cJ>(u(t»),
for all t ~ O. It follows from Lemma 4 that there exists ME < 00 such that

0 .s: Ve ::s Me

Furthermore, it follows from Lemmas 2 and 4 that

-l:I.ve ~ <I>'(u)(-l:I.u) = <I>'(u)(g(u) -u,) = (1 -E)g(Ve) -(Ve)"

so that ve is a super-solution of the equation

aUe

at
-~ue= (1 -e)g(ue).

u£ = 0

u£(o) = o.
an,on

It now follows from (28) that the solution ue of (29) is global and bounded by Me. As
above, we deduce that We = limt-+oo ue(t) a (classical) solution of the equation

In .Q,

a.Q.

-l:1we = (1 -e)g(We)

We =0 on

It follows (see property c) in the introduction) that A * ~ 1. By Lemma 5, (2) has a weak

solution. 0

4. Proof of Theorem 2. Since the hypotheses of Theorem 2 allow g to vanish at the
origin, we need a variant of Lemma 4 that applies to the case g(O) = O.

Lemma 6. Assume (3). There exist constants K ~ 0 and EO > 0 such that for every
0 < E < EO, there is afunction <1>£ E C2([O. 00», concave, increasing, with

(30)

(31)

x ~ o.for

Moreover; suPx?;.O <l>f:(X) < 00.

Proof. If g(O) > 0 we apply Lemma 4 with g(u) = g(u) -E and the conclusions follow

with EO = g(O) and K = 1.
Therefore we may assume that. g(O) = O. Let. a > 0 be the unique solution of

g(a) = 1. Set l x ds
H(x) = a + -for

a g(S)
x~a
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Since g(a) = 1, there exists 0 < EO < 1 such that 0 < E < g«l -E)a), forO < E < EO.

For such an E, let

Thus 'liE(X) = HE-l (H(x», is well defined for x ?: a, 'liE(a) = (1 -E)a and
suPX~Q 'liE(x) < 00. Furthermore. for x :?:: a,

g(\lJe(x» -e
W;(X) = (33)

g(x)

In addition, for x ~ a we have

g(x)g'(\l/e (x»\1/; (x) -(g(\l/e(x» -e)g'(x)\1/;' (x) =
g(X)2

(g(WE(X» -e) (g'(WE (X» -g'(x»
-<0 g(x)2 -,

since \1/ e (x) ~ x thus g' (\1/ e (x)) ~ g' (x). We finally consider a concave function
ct>e E C2([0, 00)) such that ct>e(x) = \l/e(x) for x ~ a, ct>e(O) = 0, and ct>~(x) ~ 1 for
all x ~ O. Such a function exists since

\Ve(a)
'Ii;(a) ~ a

Clearly cl>e satisfies (30) and (31). We claim that (32) holds with K =
Indeed, it follows from (33) that for x ~ a

g(cI>e(X)) -E ~ g(cI>e(X)) -EK

<

+ ag'(a).

<1>'( ) >I: X -g(x) -

so that (32) holds for x ~ a (since <I>~ ~ 0). For x ::::: a, we have

<I>~(x) ~ <I>~(a) = g«l -E)a) -E.

..;.-

g(x)

Furthermore, by convexity,

g«l -e)a) ~ g(a) -eag'(a) = -E(K -1);

and so, for x ~ a,
eKEK<I>~(x) ~ 1 -E:K = 1 - >1-

g(a) -g(x)

g«I>e(x» -eKg(x) -eK
>

g(x) -g(x)

It follows that (32) is satisfied for x ~ a, which completes the proof.

~

0
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Lemma 7. Let 8 be given by (5). For every 0 < T < 00, there exists E, (T) > 0 such
that if 0 < E ::5 EJ, then the solution Z of the equation

(0,00) X n,

(0,00) X an,

mz, -D.Z = -E

Z=O
Z(O) = 0,

on

satisfies Z ~ 0 on [0, T] x Q.

Proof. Let (T(t»t?O be the heat semigroup with Dirichlet boundary condition, and
consider the solution ~O of (16). We have

for all t :::: O. Since T (t)«:"o :::: 0, it follows that

(35)

for all t ~ O. On the other hand. we have

Z(t) = T(t)<5 -e 1t T(s)lnds;

and so,
Z(t) ?:: T(t)8 -EC8.

Consider now Co, CI > 0 such that COCPI ~ 8 ~ CICPI, where CPI > 0 is the first
eigenfunction of -~ in HJ (Q), associated to the eigenvalue AI. We have

T(t)8 ~ COT(t)fPl = coe-)..I'fPl ~
c)

Therefore,

Co -AIT
-e

CIC
0It follows that 2(t) ~ 0 on [0, T], provided e ~

Proof of Theorem 2. If (3) fails, then the solution of

()f = g(()), O(Q) = IluoIIL~.

is global. Since e (t) is a super-solution of (1) and 0 is a sub-solution, it follows that all

the solutions of (1) are global.
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We now assume that (3) holds. Furthermore, we may assume

w f/ L OO(Q), (36)

since otherwise u(t) ~ w by the maximum principle, and so u is global. We denote by
[0, Tm) the maximal interval of existence ofu, and we now proceed in five steps.

Step 1. We have u(t) ::5 w for all t E [0, Tm). (Note that if w were a smooth
solution of (2), this would follow from the maximum principle.) Fix T < Tm. Let
h(t, x) E V(O, T) x ~), h ~ 0, and let ~ be the solution of

-Sf -LlS = h, ~Iaa = 0, ~(T) = O.

We have in particular l; E C«O, T], C2(Q) n Co(Q). Multiplying (1) by l; and inte-
grating on (0, T I X 0, we find

On the other hand,

1T L Wl;t -L Wl;(O) = 0,

and

-lTl w~l; = lTlg(W)l;.

Therefore,

l<UQ -w){(Q) + iT l(U -w)h = iT 1 (g(u) -g(w»t;

Since l; ~ 0 and Uo -w ~ 0, this yields

L (u -w)h ~ 1TlT !U?:.UJ)

(Note that lIu II LX>«O.T) xQ) < 00, so that g is Lipschitz on [0, lIu IILrxJ«o.T)xQ)].) Therefore,

I

2

1T1T

On the other hand,

~(t) = /T T(s -t)h(s) ds,
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where (T(t»t?;O is the heat semigroup with Dirichlet. boundary condition, thus

2

lh2.
IIh(s)lIv ds

Therefore,

iT

1,2 " ~ i T 1h2;" 2 0 "

and so,

{ (u -w)h ~ ~ ( {T
JQ ~ JoiT

2

l [(u -w)+r

Now we observe that (u -w)+ E LOO«O, T) x Q), and we let h converge to (u -w)+
in L2«O, T) x Q) and be bounded in LOO«O, T) x Q). Since u -wELl (Q), we obtain

iT
It follows that u :5 w provided C2T2 < 2. The result follows by iteration.

Step 2. There exist 0 < -r < Tm and Co, Co > 0 such that

U(T) ~ Co8,

and
U(T) ~ W -cob'

Set Vo = min{w, 1 + uo}. We have Vo ~ Uo and Vo ~ Uo by (36). In particular. there
exists a function y : [0, 00) ~ R such that y(t) > 0 for t > 0 and

T(t)(vo -uo) ~ y(t)/S,

where <5 is defined by (5) and (T(t»t~O is the heat semi group with Dirichlet boundary
condition. Let v be the solution of (1) with the initial value v(O) = Vo. and let [0, T)
be the maximal interval of existence of v. We have v ~ 0, and by Step I, v ~ w. Let
z(t) = u(t) + T(t)(vo -uo) for 0 ~ t < T. We have

(O,T) x Q

aQ,

Q,

in

on

in

Zt -6z = g(u) .5: g(z)

z=O
z(O) = Vo

so that z ~ v by the maximum principle. Therefore,

u(t) < vCr) -T(t)(vo -uo) :5: w -T(t)(vo --uo) :5: w -y(t)8
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for 0 ~ t < T by (39). Fix 0 < T < min{T, Tm}. U is bounded by some constant M
on [0, T] x '!'2, so that

u(t) ~ MT(t)lQ + g(M) 11 T(s)ln ds.

There exists a function C : (0, 00) ~ IR such that T (t) I ~ :5 C (t)h' for t > 0, so that
we deduce from (35) that

u(t) .:::: MC(t)8 + g(M)C8,

for 0 < t ~ T. (37) and (38) now follow from (40) and (41).
Step 3. We may assume without loss of generality that

Uo .::::5 Co~,

and
Uo ~ w -CoO.

where Co, Co are as in Step 2. Indeed, we need only consider u (. + 'l') instead of u ( .).
Step 4. Let EO and <1>£ be as in Lemma 6, and set w£ = <1>£(w) for 0 < E < EO. Then

We e L OO(Q),

and

for all t; E C2(Q), t; ~ 0 on nand t;(aQ = O. Moreover, there exists 0 < 8) ~ 80 such

for 0 < £ < £\, where Co is as in (-
and 6. In order to prove (46), set

1] = min{w, (Co + co)8}, and 1]£ = <1>£(1])

Here, h' is given by (5) and Co is as in (42). It follows from (42) and (43) that

Uo ~ 77 -coh'o

We claim that
Co

11 :5 11e + 2°' (48)

for E > 0 small enough. Note that it follows from (47) and (48) that Uo :5 17e -~!J,
and (46) follows since 17e :5 We (since <I>e is nondecreasing). Thus we need only

that
Co

Uo ~ WE -2b', (46)

~3). Indeed, (44)1 and (45) follow from Lemmas 2
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prove (48). Note that 1]& ~ 1] :5 M, where M = (Co +co)//8//Loo, and that 4>; (x) ~ 1,

uniformly on [0, M] by Lemma 6. Therefore,

1] -1]£ ~ 1] sup (1 -<I>~(x» ~ (Co + co)fJ sup (1 -<I>~(x» ~ ~fJ,
O~.t~M O~x~M 2

for s small enough, and (48) follows.
Step S. Conclusion. Assume for the sake of contradiction that T m < 00. Let S > 0

be small enough so that
Co

Uo < WE --8
-2

(see Step 4), and so that the solution Z of the equation

(0, Tm) x g,

ag,

In

on

in g,

is nonnegative on [0, Tm] x Q (see Lemma 7; here, K is given by Lemma 6). Let v be
the solution of

(0, T) x Q,

aQ,
Q.

in

on

in

VI -~V = g(lvl} -eK

v=O
v(O) = We

Set z(t) = Z(t) + u(t) forLet [0, Sm) be the maximal interval of existence of v
0 ~ t < T m' We have z ?:: u ?:: 0 and

Zt -~Z = g(u) -eK :5: g(z) -eK

Z,aQ = 0,

(0, Tm) x Q,on

in QCoz(O) = Uo + 2~ ~ We

By the maximum principle, we have z .:5: v on [0, min{T;n, Sm}). In particular, v ~ o
on [0, min {T m, Sm}); by the maximum principle and (45), v ~ We. Since We E L 00 (Q),

this implies that Tm < Sm = +00. Therefore, u ~ Z ~ v ~ We on [0, Tm), which is

absurd. 0
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