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SUBLINEAR ELLIPTIC EQUATIONS IN R n 

Hahn Brezis and Shoshana Kamin 

1. Introduction: 

We are concerned with the question of existence (or nonexistence) and uniqueness of 

solutions of the problem 

(1) - Au = p(x)u a in A n , n > 3 

with 0 < a < 1 and p(x) > 0, p not identically zero. We shall assume throughout the 

paper that p E L m We look for a solution u > 0, u not identically zero, so that, by the 
loc" 

strong maximum principle, if such a solution exists then u > 0 in in 

We shall often use the following: 
L | t~n~ _ Definition: We say that a .function p E loc~ j, p > 0, has the property 

problem 

(2) - AU = p in R n 

has a bounded solutior~ 

(H) i f  the linear 

Our main result is 

Theorem 1. Problem (I) has a bounded solution iff  p satisfies (H). Moreover there is a 

minimal positive solution of  (i). 

This minimal positive solution of (1) tends to zero at infinity in a sense to be preeised 

later. Moreover it is the unique positive solution of (1) which tends to zero at infinity (see 

Theorem 2 below). 

In Section 2 we prove Theorem 1 and in Section 3 we present uniqueness results for (1). 

In Appendix I we summarize some properties of the linear Poisson equation (2). In Appendix 

II we review the uniqueness question for equation (1) in bounded domains. 

Problem (1) for bQ1~nded domains with zero Dirichlet condition has been extensively 

studied (even for more general sublinear functions). We refer in particular to Krasnoselskii [10] 

(Theorem 7.14 and 7.15) and [1] (see also the references therein). Problem (1) in all of space 

has been considered in [3], [4], and [11] under more restrictive conditions on p (p is 

equivalent to a radial function for large ]xl). 

The study of (1) is also related to the asymptotic behavior (as t --~ | of the solution 

of 

(3) p(x) ~ t  = Aum in ~n x (0,| 

with m = 1/a  > 1 which has recently been studied by Eidus [5] (see also [6]) for a class of 
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functions p tending to zero at infinity. In fact, separatin~ variables, we have a solution 

u(x,t) of (3) of the form u(x,t) = C v l /m(x) ( t  + v)-  1/ tm-1) provided v(x) is a 

solution of (i). 

2. Proof of Theorem 1 

A. Sufficient condition: 

Let 

and let u R be the solution of 

(4) 

B R = {x E ~n; ix ] < R} 

- Au = p u a in BR, 

u = 0 on aB R. 

It is well-known that u R exists and is unique (see e.g. [I0], [I] or Appendix If). The 

sequence u R is increasing with R. Indeed, let R' > R. Then u R, is a supersolution 

for the R-problem. We now construct a subsolution u for the R-problem with u < UR,. 

This will imply that there is a solution u for the R-problem between u and UR,. Since 

the unique solution is u R it follows that u R < u R,  in B R. For _u we may take e~o 1 

where ~1 satisfies 

- A~~ = A1 P ~I in B R , 

~1 = 0 on OB R . 

We now prove that the sequence u R remains bounded as R ~ | In fact 

UR_<CU 

for some appropriate constant C. Indeed, C U is a supersolution for the 

R-problem since 

- A (CU) = Cp _> p (CU) ~ 

provided 
c l - a  >_ I I U I l ~ .  

Therefore u = 1 im u R exists and u is a solution of (1) satisfying 
R-4 

(5)  n < C u . 

Clearly u is the minimal solution; indeed if u is another solution of (1) then u R _< 

B R by the above argument and thus u < u. 

on 
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B. Nec~sary condition 

Suppose u is bounded positive solution of (I) and set 

1 ul-a 
v ~ - -  

l - a  

Then 
- Av = a u-~ + p _> p . 

The solution w R of the problem 

I - Aw R = p in B R , 

(6) w R = 0 on ~B R 

satisfies w R < v. Thus w R increases as R ---4 | to a bounded solution of (2). 

The meaning of Theorem 1 is that if p(x) decays fast enough at infinity then Problem 

(1) has a solution. It need not exist if p(x) has a slow decay at infinity. As we see in the 

next example, if p(x) decays like a power, the critical exponent is two. 

R~ample 1: Assume 
p(x) = 1 with p > 2 

1 + Ixl p 

or 

1 with p > 2 
p(x) = (1 + Ixl2)llog(2+Ixl)l p 

then Problem (1) has a bounded solution. Indeed the Poisson integral 

c__c_ �9 p provides a bounded positive solution of (2) where c/Ixl  n-2 
Ixl n-2 

is the fundamental 

solution of - A. 

RYample 2: Assume 
p(~) 

then Problem (1) has no solution. 

Assume 

(7) 

then there is no function 

(s) 

= I ~th p <_ 2 

1 + Ixl p 

In fact a stronger nonexistence result holds. 

Ixl_>l 

u E L~oc(R n) satisfying 

dx=| , 

-AU = pu a in ~ ,(~n) 

u > 0 
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except u = 0. Indeed, assume we have a solution of (8). By local regularity, 
w2,q u E ,,loc for all q < | and if u is not identically zero then u > 0 in ~n. As above, 

set 
1 1-a 

v = ~--~---~ u 

so that - Av > p. It follows that 

(9) w R < v 

where w R is defined by (6). As R T =, w R T = because of (7) (see Appendix I). This 

is impossible by (9). 

l~Pm~rk I. The minimal solution u obtained in Theorem 1 satisfies 

f dy (lO) u(x) = e j=n 

and also 

lira ,,~ u = 0 
P 

(11) 
R-,= J'S R 

where ~" u denotes the average of u on the sphere of radius R (centered at 0). 
jc 
S R 

Indeed, u satisfies (5) for any positive solution U of (2); in particular we can take U = 

�9 p. We now apply Lemma A.4 in Appendix I to conclude that (Ii) holds. As a 
ixl n-2 

consequence of (11) we have 

lira in[ u(x) = 0 . 

Ixl - = 

Next, let f = pu a. The linear equation - Av = f in ~n has a unique solution 

satisfying 

= c 
namely v -~-'---2 * f" 

ixl = 

l i ra  ~ v = O ,  
R-~| S R 

Since u satisfies the same equation and also (II) we obtain (I0). 

R~m~rk 2. The minimal solution u of (I) depends monotonically on p. 

Pl -< P2 and let Ul, u 2 be the corresponding minimal solutions of (I). 

supersolution for the equation 

Indeed let 

Then u 2 is a 
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Thus Ul, R < u 2 in B R- 

u I <_ u 2. 

- Au = Pl ua in B R 

u = 0 on 0B R . 

Passing to the limit as R ----, | we find that 

Remark 3. The minimal solution u obtained in Theorem satisfies 

C 1 U 1-a < u < C 2 U . In general these bounds are sharp. For example if p has compact 

support then both u and U behave at infinity like the fundamental solution. However if 

p(x) ~ Ixl -p at infinity with 2+(n-2)(1-a) < p < n then a simple computation shows that 

U(x) ~ Ixl -~p-'2) and u(x)~ Ixl -(p-2)(l-a) 

3. Uniqueness 

As we have noted the  minimal solution u constructed above satisfies 

(12) lim in f  
Ixl ~ | 

Our main uniqueness result is 

Theorem 2. Assuming p has property (H), 

soZ~.t~on of (1) sat~.~z~ (If). 

u ( ~ )  = o . 

then there is exactlH one bouT~ded positive 

Remark 4. There exist other bounded positive solutions of (i) which do not satisfy (12). 

fact, given any positive constant a, there exists a solution of (1) satisfying 

lira inf u(x) = a. 

Ixl -, | 

Indeed, consider the problem 

-Au -- p u a in B R , 
(13) 

u a on aB R 

As subsolution for (13) we may take a and as supersolution we may take 
c (CU + a) where U l~-n_ 2 �9 p with C is large enough. We then let 

R -.-d m. 

In 

The proof of Theorem 2 is divided into 3 steps: 

Step I. Assume gl -< P2 and that they satisfy property (H). 

solution u ofthen there exists a bounded positive solution u 2 

Given any bounded positive 

of 
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(15) 

such that u I < u 2 . 

- Au2 = P2 u2 a 

lim,jJ" u 2 - 0 
R-,| S R 

in ~n 

Proof. Clearly u I is a subsolution for (15) in the sense that 

a 
- AUl -< /)2 Ul 

Since u I is bounded we have 

and by Lemma A.6 we find that 

- Au I < C /)2 

1 
u 1 _( C (~'~n-2 * P2 ) ' 

The right-hand side is a supersolution for (15) provided C is large enough. Using the 

standard monotone iteration technique (directly in ~n) we obtain a solution u 2 of (15) 

such that 

u I _< u 2 _< C(]-x~in_ 2 * p2 ) - 

The only difference with the usual case of bounded domains is that the Dirichlet condition is 

replaced by the condition at infinity I im ,~ u = 0. The standard maximum principle is 
R-, | o's R 

replaced at each stage by Lemma A.6. 

We shall now show that it suffices to prove Theorem 2 in the case p > 0. 

Step 2. Assume we have proved uniqueness for any p > 0, then we also have uniqueness 

for a general 9 ~ O. 

Proof. Let pr -- p + eh where h E C| n) fl LI(~ n) (1 L| n) with h > O. Let u e 

be the unique solution of 

- A u e  = Pe u~ in ~n s 
061 

l i r a  u e = 0 
R-~| S R 

Let u be any solution of 
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(17) 
- Au = p u ~ in Rn 

R-, | S R 

we know that By Step I (and by the uniqueness of Ue) 

(18) u _< ur 

We prove that ,  as s ~ 0, u e J. u where !t is the minimal solution constructed in Theorem 

1. Indeed let ue, R and u R be the positive solutions of 

u a in B R (19) - AUe,R = Pe ~,R 

with ur R = 0 on 0B R 

and 

(20) 

with 

u R 

- Au R = p URa in B R 

u R = 0 on 0B R . 

We now use the same device as in Appendix II (method II), namely, we multiply (19) by 

and (20) by Ue, R. Integrating by parts we find 

Ue,Ra UR ~atUs,Rl--a BR(P ~ , [BR p UR1-~ = I - p)uR u a - ~,R 

and thus 

BR p Ue,R UR ~ e,R -UR l-a, ~ <- Cr 

where C is independent of R. Passing to the limit as R ~ | (and using Fatou) we 

obtain 

I np a u a l-a ul-a) u s (u - <_ C~ . 

Using (18) we have 

and thus pu a = p~o. 

infinity). 

I p u a ~a (ul-a _ ul-a) = 0 

Hence A(u - u) = 0 and therefore u = ~! (by the condition at 

The last step involves the use of parabolic equations as in [8]. As we already mentioned 

in the Introduction if u(x) is a solution of (I) then 
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Cm ul I mcx ) 
v(x, t) = 

(t + v) 11(m-l) 

satisfies 

(21) P ~ t  ---- Avm 

where m -- 1 / a  and C m = ( m - l ) -  1 / (m-l ) .  Our proof of uniqueness for problem (1), (12) 

relies heavily on existence, uniqueness and comparison properties of solution of (21). 

Step 3. We recall first a well-known fact about bounded domains (see e.g. [2]). 

Let fl c R n be a smooth bounded domain, p e L| g _) 6 > 0 on ft. Then given 

any v 0 ) 0 on II, v 0 ~ L| there exists a unique solution v(x,t) of the problem 

I 
p ~- Av m = 0 in fl x(O,| 

(2~) v o on on x(0,| 

v(x, 0) v0(x ) in II 

Moreover if there is another solution ~(x,t) of (22) with ~(x,t) _> 0 on 

~flx(0,| and "~(x,0) >_ v0(x ) then ~'(x,t) ) v(x,t). 

Let tt be the minimal positive solution of (1) in the sense of Theorem 1. Let 

any bounded positive solution of (1) satisfying (12). By Appendix I we know that  

l i m d  ~ u = 0 . 
R-~| JSR 

Let v R be the solution of 

av R 

I 
g ~ -  - AvRm = 0 in B R x(0,| 

VR(X,t ) = o on 0S R ~(0, |  

v R(x,0) = Cmul/m(x) in B R 

By comparison in bounded domains we see that 

Cm ul / re(x) 
(23) vR(x,t) _< ( t + 1) 1 / ( m - l )  

and also 
Cmul/m(x) 

(24) VR(X't) <- t I / (m-l) " 

As R T | the sequence v R increases to some limit v| which satisfies 

u be 
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(25) 

and 

(26) 

Moreover we have 

(2~) 

Ov 
p ~-~-| - Av| m = 0 in ~n ,(0, | 

v| = Cmul/m(x ) . 

Cmul/mix ) 
v| <_ ( t  + I) 1/(m-1) 

Cm ul / m(x) 
We already have a solution of (25), (26) namely 

( t + 1) l / i r a - l )  " 

Cmul ] mix ) 
(28) v| (x,t) = ( t  + 1) 1/(m-l)  -- vix't)  

For this purpose we multiply 

We claim that 

by the function K(x) = c n-2 - Rn-2 

IBRP(X) ( v -v |  + I~(v  m -  v| 0 

0 v| ~ dS dt 

The integral on the right hand side is bounded by 

CT~sU 
R 

which tends to zero as 

we find 

R-, | Thus v = v| (since p > 0). Passing to the limit in (24) 

Cm ul / re(x) Cmul/m(x) 

(t + I) 1/(m-t) <- t ll(m-l) " 

As we know from Appendix I 

lim ~J~S U = O  
R-~| R 

Letting t --~ | we conclude that u ( u. 

Remark 5. Assume p has property (H). 

where U = c ,-,~Tn-2* p, and thus limxli~nf. - -  U = 0. It may happen that U(x) does not 

tend to zero as Ixl ---, | . Here is a simple example for n > 4. Let ~ x ' )  be the 
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solution of 

-A x, ~ = p(x') in n{ n-1 

l i m ~ b  = 0 
I x ' l  -~ | 

| ), p _> 0 and p not identically zero. Then where p E C O (~n-1 

UCx) = ~ x ' )  x = (x i, x ' )  

provides such an example since U(Xl, O) = ~(0) does not tend to zero as 

{Xl[ --~ | In such a situation there is no solution u of (I) which tends to zero at infinity 

because of the estimate from below u 1-a > (1 - a) U (see the proof of necessary condition 

in Theorem 1). 

The uniqueness question becomes easier under a stronger assumption 

Theorem 2'. Assume there is a solution U of (~) such that 

(29) l i r a  U(x) = O.  
I x l - ,  | 

Then there ezq, s~s a unique positive solution u of (I) such that 

l i ra  u(x) = 0 . 
I x l - ,  | 

Proof, The existence part is clear since we already know that there is a solution u of (1) 

such that u _< CU. For the uniqueness we could invoke Theorem 2 but we present instead a 

simple argument due to Louis Nirenberg. 

First we change the unknown. As in the proof of Theorem 1 we set 

1 ul-a 
v = l---- ~ 

so that we find 

c l V v l  2 = p (30) - A v  - v 

for some positive consta,nt C (depending on ~). Uniqueness holds ~or (3O)  since the 

function 1/v is decreasing in v. More precisely, suppose we have two solutions vt, v 2 

(30) with lira v I = lira v 2 = 0. Then w = v I - v 2 satisfies 

jxl-| Ixl-| 

c__q_ c lVv2i2w = 0 - A w  - V l  V(v I + v2) �9 V w  + ~ 

Since the coefficient of w is nonnegative we may use the maximum principle to conclude 

of 

96 



Brezis-Kamin 

that w = 0. 

Remark 6. Clearly if p is a r~dial function satisfying (H) then (2g) holds. It also holds if 

p is bounded by a radial function satisfying (H). 

4. Some generalization 

Our methods extend to more general problems of the form 

- nu = p(x) f(u) in ~n 

under suitable assumptions of f and in particular f(u) behaves like u a near u = 0. 

For simplicity we restrict our attention to the model problem 

f(u) = ua(1-u) ,  i.e. 

(31) - An = p(x) ua(1-u)  in ~n . 

Theorem 3. Assume p sa t~ f i~  (H). Then there is a unique solution u, 

0 < u < 1 o f ( S l )  such that 

(32) l i r a  inf  u(x) = 0 . 
l x l  - | 

Proof. For the existence part we proceed as in the proof of Theorem 1 (sufficient condition). 

We obtain a minimal solution u_ with u <_ 1 and u_ _< CU. For the uniqueness we 

proceed in two steps. 

Step 1. Let u be any solution of (31), (32). Then there exists some r > 0 such that 

(33) ~ u <_ ~ . 

It is useful to introduce the unique positive solution v of the problem 

[ -  Av = p v a in ~n 
(34) 

l i r a  i n f  v (x )  = 0 
I x l ~ |  

Note that u is a subsolution for (34) since 

ua(1-u) <_ u a 

and therefore, by monotone iteration and uniqueness of 

u < v .  

Next, we note that for 

It follows that ev < u, 

v, we obtain 

c > 0 smaU enough ev is a subsolution for (31) since 

- n(~v) = ~ p v  ~ <_ p(Ev)a(1-~v). 

the minimal solution of (31) (to justify this we use comparison in 
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B R and then let R ~ | Thus (33) holds. 

Step 2. We now follow the same technique as in Method III of Appendix II. Let u be any 

solution of (31), (32) and let 

A={tE[0,11; tu<_u_}. 

We claim that 1 e h. Suppose not, that 

t o = sup h < I. 

By Step 1 we know that t O > 0. Fix K large enough so that the function 

f(t) + Kt is increasing on [0, 1]. We have 

(35) - A(l! - t0u ) + Kp(u - t0u ) > p[f(t0u ) - t0f(u)]. 

Choose e>0 small enough so that 

a t o > e(K+l) t O - _ 

We claim that 

(36) - A(!l-t0u--eu ) + Kp(u_-t0u-~u ) > 0 . 

Indeed we have by (35) 

-A(_u-t0u--eu ) + Kp(ti-t0u---eu ) > p[f(t0u ) - t0f(u ) - ef(u) - eKu] . 

But  

f(t0u ) - t0f(u ) - ef(u) - EKu = ( t~ - t0 -e )ua  + ( t 0 - t ~ + l + e ) u a + l - c g u  

> eKu a -  eKu > 0 

since u<l. 
By Kato's inequality (see [9]) we have 

A ( t 0 u + e u - u ) +  > A( t0u+eu-u  ) sign + ( t0u+eu-u)  . 

Using (36) we deduce that  
A( t0u+eu-u)+  _> 0, 

i.e., the function 9 = ( t 0 u +e u - u ) +  is subharmoaic. It follows that,  for any x0, 

~(x o) _< ~, 
SR(X 0) 

where SR(X0) denotes the sphere of radius R centered at x 0. But 

~o <_ ( to+e)u <_ ( to+e)v and we know (see Remark 1) that 
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l i m ~ s  v =  0 
R-~ | R( x 0 ) 

(since the origin may be shifted to any point x0). We conclude that ~--0 and thus 

(t0+e)u < u. Hence t0+e E A, which contradicts the maximality of t O . 

Appendix I 

Throughout the paper we have often used the property (H), namely that the equation 

(A.I) - AU = f in ~n 

has a bounded solution. We discuss here some equivalent forms and some consequences. In 
L | /~n~ what follows we always assume that f E loc~ j, f _) 0 a.e. and that  f is not 

identically zero. Let u R be the solution of 

(A.2) I- AuR = f in B R 

t u R 0 on ~B R 

Note that u R is a nondecreasing sequence of positive functions (in BR) for R large 

enough. Moreover u R is given by 

(A.3) UR(X ) = IBRGR(X,y ) f(y) dy 

is the Green's function relative to B R and zero boundary condition. where G R 

Let 

u| = l i r a  UR(X ) (possibly + | 
RT| 

Note that,  by monotone convergence of GR, 

Us(X ) = c I 1 n_2f(y)dy = c___ �9 f 
~n Ix-y[ ]xl n-2 

(possibly + | where c/[x[ n-2 is the fundamental solution. Remark that there are only 

two possibilities, either u| -- + | Vx or us(x ) < + | Vx. Indeed suppose for example 

that u| < + | 

Write 
=cl f y) +cl f(Y) 

[Yl -< 2Ix[ Ix-y}n-2 [Yl > 2lxl Ix-yln-2 " 
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The first integral is finite (for each fixed x) while the second integral is bounded by 

2 n-2 c I f(Y) dy. Hence < 
l y l  n-2 u| | 

If we make the assumption that 

u| = el f(y) dy < | 
lyl n-2 

then u| is finite for each fixed x but it need not be uniformly bounded on ~n. 

I,,,mm~ A.1. f satisfies proper~ (H) iff 

c 
(A,4) T~Tn_2 * f E L| n) �9 

Proof. Suppose first that (H) holds. By adding a constant we may always assume that 

U _> 0 in ~n. By the maximum principle 

u R < U on B R 

and therefore 

(A.5) u| - ~ * f < U 
- i x l n - 2  - 

s 
Conversely, the function ~ n - 2  * f provides a bounded solution of (A.1). 

Since U could be any nonnegative solution of (A.1) we have 

Corollary A.2. If  (H) holds then u| is the minimal positive solution of (A. 1). 

As a consequence of minimality we have 

CoroUaxy A.3. I f  (H) h o ~  th~  
lim inf u| = 0 . 
Ixl ~| 

In fact, any bounded solution U of (A.I) such that 

lira inf U(x) = 0 
Ixt -| 

coincides with u| This follows from the fact that the difference of any two bounded 

solutions of (A.1) is a bounded harmonic function and thus it is a constant. 

A stronger way of expressing that u tends to zero at infinity is the following 

L,~mma A.4. Suppose u| < | Vx e ~n then 

l i r a  ~ u |  
R-*| S R 
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where , ~  denotes Lhe average on the sphere of radius R. 
J b  R 

Proof. By Fubini we have 

~sa lyl=R 
= Rn_l dx . 

Note that 
I(x) = I dSy (CR(~-r)n-2 if Ixl > R 

Ix-yJ n-2 = I ( o )  i f  I=1 < R 
lyI=R 

with 
dSy f 

z(o) = j iyl n-2 
lyI=R 

= CR 

(this is a consequence of the fact that I(x) is harmonic in Ix I < R and in Ix I > R; 
moreover [(x) = I(Ixl) and in addition I(~) = 0). 
Hence we have 

,J~SRU| = ~ C  I f(x) d x + c  I f(X)]x I n-2 dx 

} x l < R  f x l > R  

Clearly the second integral tends to zero as R --, | We estimate the first one by 

[xl <R 0 

We first choose R 0 so that 

C 

and then R large enough so that 

Ro< Ixl <R 

I ~xf[~_ dx < e 

R0<l~l 

C I f(x) dx < e . Rn'E:'2- 

Ixl<R o 

Any bounded solution O of (,4.1) such that Lemm~ AS. 
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Lmnma A.6. 

~S U , 0 as R---*| 
R 

coincides with u| 

This is clear since the difference of two bounded solutions of (A.1) is a constant. 

Assume (H). Let UeL | be a f~nction with AU E L| satisfying 

- AU < f in A n 

and 

flj[/S U , 0  a, R , |  
R 

Then U < n . 

Proos Set g = - A(u| - 

Since ~/SR(U| - U) -----* 0 

we may apply Lemma A.5 to conclude that 

u| - U - 

u)  _) o .  

as R ---* | 

c *g>0. 
ixln-2 

Appendix II 

Here we briefly review several proofs of uniqueness for the problem 

(A.6) 

- au  = : ( = )  f ( u )  i n  n 

u > O  in fl 
u=r on o%] 

under the assumptions that ft ~ is decreasing, fl is a smooth bounded domain and p > C 

Method I. This is the method introduced in [I]. Let u I and u 2 be two solutions of 

(A.6). We have 
(A.7) AUl Au2 (~--~) u 1 + - q  = pC! fCu2)) 

- - -  T22 

Multiplying (A.7) by (u~ - u~) we obtain 
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u I u 2 ) S vu,.- -,- _- I,/c  
u 2 )kUl - . 

It follows tha t  u 1 = u 2 on the set [p > 0], In par t icular  gf(ul )  = ~ (u2 )  on ft. 

back to (A.6) we see tha t  u 1 = u 2. 

Method II. Let u 1 and u 2 be two solution of (A.6). We have  

,f(ul) f(u2!) , 
(A.8) - (Au 1) u 2 + (Au 2) u I = /mlU2t'T1 u2 

Integrating (A.8) on the set [u I > u2] = E we obtain formally 

- P UlU2~" ~1 u2 u 2 -I- u I -- J E  

Note tha t  u 1 

while the in tegrand on the r ighthand side is nonpositive. 

we are led to 

Similarly, using F = [u I 

Clearly 

Note tha t  

Going 

= u 2 and ]~-~(u I - u2) < 0 on /)E. Thus the lefthand side is nonnegative 

< u2], 

I " ulu2 I f(~) f(~)l = o. 
u I u 2 

n 

We conclude as above. 

To make this argument rigorous we proceed as follows. Let 0 be a smooth 

nondecreasing function such that 0(0) = 0 and 0(t) = I for t > I, 

0(t) = - 1 for t < - I. Set 

0it) = 0(t/~) 

Multiplying (A.8) by #(u I - u2) and integrating we obtain 

I[( % ) . u  2 -(vu2) .u 1] O;(u~- u2).v(u 1 - u 2) 

(A.9) ] f .,f(Ul) f (~_~22').) 
[ = j .  UlU2 t- ~1 o(u~ - u 2) 

LHS _) [(Vu2)(u 2 - Ul) Oi(u 1 - u2) 'V(u I - u 2) 
J 

I Vu2(u - ul)Si(u I - u2)V(u I - u2) : - IVu2V?e(Ul - u2) 
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t r 

where 7e(t)  ---- J0 s 0~(S) ds . 

Since l~fe(t)[ _< C �9 and  An 2 e L | we see tha t  

LHS > - C e . 

Going back to (A.9) we obtain,  as e --4 0, 

IP ulu2 tf(u.~. I) f (u2) [  
Ul u2 = 0 . 

Method  HI. This  is a var iant  of Krasnoselkii 's  method [10]. Let 

solutions. Let  

Clearly A 

u 1 and u 2 be two 

^ =  {te[o,1]; tu l_<u 2 on n} .  

contains a neighbouthood of 0. W e  claim tha t  1 E A . Suppose not ,  tha t  

t O = sup A < 1 . 

Then  

- A(u  2 - t0u l )  = p f (u  2) - t O P f(ul) .  

Fix a positive constant  K large enough so tha t  f(t)  + Kt  is increasing on 

[0,Max u2]. T h e n  

- A(U 2 - t 0u l )  + Kp(u 2 - t0Ul) = p[f(u2) + Ku 2 - t0(f(ul)  + KUl)] 

_> p[f(t0ul)  + K t0 u  I - t0(f(Ul) + KUl)  ] = p[f(t0ul) - t0f(ul)  ] > 0 

( the las t  inequal i ty  follows from the  fact t ha t  f (u ) /u  is decreasing). On  0fl 

u 2 - toU 1 = (1 - to) ~o > O. 

we have 

W e  dist inguish ~wo cases: 

C a s e  1: ~ -= 0. Using the  stron~ m a x i m u m  principle we see tha t  either 

u 2 - t0u 1 > 0 on fl wi th  ~ ( u ,  2 -  t 0u l )  < 0 on o~ . Then,  clearly there is some 

e > 0 such t ha t  u 2 - t0u 1 > e u 1. Thus  t O + e E A. Impossible. Or u 2 - t0u 1 -= 0. 

This case is also impossible since we would have, by the  equat ion pf(u2) = t O pf(ul)  , but 

f(t0u I)  > t0 f (u l )  �9 

Case 2: ~ is not  identically zero. W e  claim tha t  there  is some e > 0 such t ha t  

w = u 2 - t0u 1 _> eu 1 . 

1 0 4  
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Suppose not, that for every r > 0 there is some point xe E ~ such that 

w(x e) < ~ u l ( x  ~ )  �9 

Clearly x e I~ o~ (for e small). Choosing a point of minimum for the function (w - eUl) 

we may also assume that 

Vw(xe) = e VUl(Xe) �9 

As e ~ 0 (through an appropriate sequence) x e ~ x 0 E ~ such that 

w(x0)<_0 and Vw(x0)=0 

and thus x 0 E at3 . This contradicts the strong maximum It follows that w(x0) = 0 

principle since we have 

- Aw + Kpw> 0 in ~l , 

w_>0 on o'~, 
w not identically zero. 

Method IV. This is a variant of Nirenberg's method already presented in the proof of 

Theorem 2'. It requires further restrictions on f, namely, f is positive, concave and 

We use the new unknown 

i u dt 
V ~ 

0 t ~ '  

or in other words u = h(v) where h satisfies 

The equation for v becomes 

h ' ( s )  = f ( h ( s ) )  . 

- A v  - f ' ( h ( v ) ) l V v l  2 = p .  

Uniqueness holds provided the function f '  (h(v)) is nonincreasing in v (see the proof of 

Theorem 2 ' ) .  This follows from the assumptions on f. 

Acknowledgemmts. We thank H. Berestycki, E. Gluskin, A. Edelson, H. Egnell, D. Eidus, R. 

Kersner and L. Nirenber$ for useful discussions. 

Part of this paper was written while both authors were visiting IMA at the University of 

Minnesota. The second author also thanks the Universit~ Paris VI and Rutgers University for 

their hospitality. 

105 



Brezis- Kamin 

References 

[i] H. Brezis - L. Oswald, Remarks on sublinear elliptic equations, Nonlinear 
Analysis, 10 (1986), p. 55--64 

[2] E. DiBenedetto, Continuity of weak solutions to a general porous medium 
equation, Indiana University, Math. J. 32 (1983), p. 83-118 

[3] A.L. Edelson, Asymptotic properties of semilinear equations, Can. Math. 
Bull 32 (1989), p. 34-46 

[4] H. Egnell, Asymptotic results for finite energy solutions of semitinear 
elliptic equations (to appear) 

[5] D. Eidus, The Cauchy problem for the nonlinear filtration equation in an 
in.homogeneous medium, J. Diff. Eq. 84 (1990), p. 309-318 

[6] D. Eidus - S. Kamin, in preparation 

[7] P. Hess, On the uniqueness of positive solutions of nonlinear elliptic 
boundary value problems, Math. Z. 15__44 (1977), p. 17-18 

[8] S. Kamin - P. Rosenan, Nonlinear thermal evolution in an inhomogeneous 
medium, J. Math. Phys. 23 (1982), p. 1385-1390 

[9] T. Kato, SchrSdinger operators with singular potentials, Israel J. Math. 13 
(1972), p. 135-148 

[10] M. Krasnoselskii, P0sitivr solutions of operator equations, Noordhoff 
(1984) 

[11] M. Naito, A note on bounded positive entire solutions of semilinear 
elliptic equations, Hiroshima Math. J. 14 (1984), p. 211-214 

Haim Bresis 
Universit~ Paris IV 
4, pl. Jussieu 
75252 Paris Cedex 05 

and 
Rutgers University 
New Brunswick, NJ 08903 

Shoshana Kamin 
Raymond and Beverly 
Sackler Faculty of Exact Sciences 

Tel-Aviv University 
Tel-Aviv, Israel 

(Received July 25, 1991; 
in revised form October 7, 1991) 

106 


