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SUBLINEAR ELLIPTIC EQUATIONS IN R"
Haim Brezis and Shoshana Kamin

1. Imtroduction:

We are concerned with the question of existence (or nonexistence) and uniqueness of
solutions of the problem

(1) ~Au=pxu®* in R ,n23

with 0 < a <1 and p(x) 2 0, p not identically zero. We shall assume throughout the

paper that p € L7 . We look for a solution u > 0, u not identically zero, so that, by the
loc Y

strong maximum principle, if such a solution exists then u > 0 in [

We shall often use the following:
Definition: We say that a function p € L

Toc(ﬂln), p > 0, has the property (H) if the linear
problem
(2 -AU =p in R:

has a bounded solution.

Our main result is
Theorem 1. Problem (1) has o bounded solution iff p satisfies (H). Moreover there is a
minimal positive solution of (1).

This minimal positive solution of (1) tends to zero at infinity in a semse to be precised
later. Moreover it is the unique positive solution of (1) which tends to zero at infinity (see
Theorem 2 below).

In Section 2 we prove Theorem 1 and in Section 3 we present uniqueness results for (1).
In Appendix I we summarize some properties of the linear Poisson equation (2). In Appendix
II we review the uniqueness question for equation (1) in bounded domains.

Problem (1) for bounded domains with zero Dirichlet condition has been extensively
studied (even for more general sublinear functions). We refer in particular to Krasnoselskii [10]
(Theorem 7.14 and 7.15) and (1] (see also the references therein). Problem (1) in all of space
has been considered in [3], {4], and [11] under more restrictive conditions on p (p is
equivalent to a radial function for large |x|).

The study of (1) is also related to the asymptotic behavior (as t — m) of the solution

of
(3) o(x) -g% =A™ in R x (0)

with m = 1/a > 1 which has recently been studied by Eidus [5] (see also [6]) for a class of
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functions p tending to zero at infinity. In fact, separating variables, we have a solution
u(x,t) of (3) of the form u(xt) = C vl/m(x)(t + 1) 1/{m-1) provided v(x) is a
solution of (1).

2. Proof of Theorem 1
A.  Sufficient condition:
Let
Bp = {x ¢ K |x| < R}

and let up be the solution of

- Au
’ [

pua in B

Rl

u 0 on aBR.

il

It is well-known that up exists and is unique (see e.g. [10], [1] or Appendix II). The
sequence up is increasing with R. Indeed, let R’ > R. Then up, is a supersolution
for the R-problem. We now construct a subsolution y for the R-problem with 1 < up
This will imply that there is a solution u for the R-problem between u and ug.. Since
the unique solution is up it follows that up $ up, in BR' For u we may take €9y
where ¥ satisfies

—A(plelp(pl in BR s

v = 0 on 0BR .
We now prove that the sequence up remains bounded as R — o. In fact
up <CU

for some appropriate constant C. Indeed, C U is a supersolution for the
R-problem since
- A (CU) = Cp 2 p (CU)®
provided
iy uyg -

Therefore u = lim up exists and u is a solution of (1) satisfying
R-w

(8) u<CU.

Clearly u is the minimal solution; indeed if u is another solution of (1) then up ¢ u on

By by the above argument and thus u ¢ u.
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B. Necessary condition
Suppose u is bounded positive solution of (1) and set
1 1-a
1-a

vV =

Then
- Av = au”a_lqu|2+p2p.

The solution R of the problem

—AwR = p in Bp ,
W = 0 on aBR

(6)
satisfies Wp < v. Thus wR increases a3 R — » to a bounded solution of (2).

The meaning of Theorem 1 is that if p(x) decays fast enough at infinity then Problem
(1) has a solution. Tt need not exist if p(x) has a slow decay at infinity. As we see in the
next example, if p(x) decays like a power, the critical exponent is two.
Example 1: Assume
ox) = —2— with p > 2
1+ |x|P
or
1 .
ox) = 3 with p > 2
(1 4+ |x|%)|log(2+|x})|P
then Problem (1) has a bounded solution. Indeed the Poisson integral
* p provides a bounded positive solution of (2) where c/|x|n—2

Ln—? is the fundamental
x|
solution of — A.
Example 2: Assume
px) = —L —  with pe2
1+ |x|?

then Problem (1) has no solution. In fact a stronger nonexistemce result holds.
Assume

! J X) gy =o ,
|x|21
then there is no function u € L%oc(lkn) satisfying

(8)

u 0

[— Au = m¢ in @@

(A%
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except u = 0. Indeed, assume we have a solution of (8). By local regularity,
u € W%’q for all q < » and if u is not identically zero then u > 0 in R®. As above,

oc
set
v = 1_1_0‘ ul—oz
so that — Av > p. It follows that
(9) ¥R (v

where wp is defined by (6). As Riw wp 1o becauseof {7) (see Appendix I). This
is impossible by (9).
Remark 1. The minimal solution u obtained in Theorem 1 satisfies

a
(10) u(x) = ¢ J e-(l)u—%gdy
R: jxy]
and also
(11) lim u = 0
R-o SR

where ,{' u denotes the average of u on the sphere of radius R (centered at 0).
Sr
Indeed, u satisfies (5} for any positive solution U of (2); in particular we can take U =
l—cl-n_z + p. We now apply Lemma A4 in Appendix I to conclude that (11) holds. As a
x
consequence of (11) we have
lim inf u(x) =0 .
x| - =
Next, let f = pua. The linear equation — Av = f in R® has a unique solution
satisfying

lim v=0,
R-a SR

namely v = —lc—ln_z + f. Since u satisfies the same equation and also (11) we obtain (10).
x

Remark 2. The minimal solution u of (1) depends monotonically on p. Indeed let

pp < Py and let u, uy be the corresponding minimal solutions of (1). Then wu, isa

supersolution for the equation
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u=0 on BBR.

Thus “I,R < 1,y in BR' Passing to the limit as R — o we find that

uy < U,

Remark 3. The minimal solution u obtained in Theorem satisfies
Cy gl <u( 02 U . In general these bounds are sharp. For example if g has compact

support then both u and U behave at infinity like the fundamental solution. However if
p(x) ~ [x|™P at infinity with 24(n-2)(1-a) < p < n then a simple computation shows that
Ux) » [x] P2 and u(x) ~ x| "P20-0)

3. Uniqueness
As we have noted the minimal solution u constructed above satisfies

(12) lim inf u(x) =0.
x| <o
Our main uniqueness result is

Theorem 2. Assuming p has property (H), then there i3 ezactly one bounded positive
solution of (1) satisfying (12).

Remark 4. There exist other bounded positive solutions of (1) which do not satisfy (12). In
fact, given any positive constant a, there exists a solution of (1) satisfying

lim inf u(x) = a.
Ix} +w

Indeed, consider the problem

- Au=yp u? in B s
(13) [ R

u=a on BBR'

As subsolution for (13) we may take a and as supersolution we may take

(CU + a) where U = -

| |n_2 + p with C is large enough. We then let
X

R— m

The proof of Theorem 2 is divided into 3 steps:
Step 1. Assume Py < Py and that they satisfy property (H). Given any bounded positive

solution u ofthen there exists a bounded positive solution u, of
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- Au2 = py U in R®
(15)
lim uy = 0
R-o 78S

such that uy < u .

Proof. Clearly u; i8 a subsolution for (15) in the sense that

o
- Buy <y uy

Since u, is bounded we have
- Au1 < C Py
and by Lemma A.6 we find that

1
U € C (= g% py) -
x|
The right-hand side is a supersolution for (15) provided C is large enough. Using the
standard monotone iteration technique (directly in R™) we obtain a solution u, of (15)
such that

1
DRET C(mn—z * ) -

The only difference with the usual case of bounded domains is that the Dirichlet condition is

replaced by the condition at infinity lim»f u = 0. The standard maximum principle is
R-o “Sp

replaced at each stage by Lemma A.6.

We shall now show that it suffices to prove Theorem 2 in the case p > 0.
Step 2. Assume we have proved uniqueness for any p > 0, then we also have uniqueness

for a general p > 0.
Proof Let p_ = p + ch where he C"(R") n LY®®) 0 L°(R®) with h > 0. Let u,

be the unique solution of

(16)

Let u be any solution of
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- Au= pu in B"
(17 { lim u=0
R-w SR

By Step 1 (and by the uniqueness of u e) we know that
(18) udu

We prove that, as e | 0, u, | u where u is the minimal solution constructed in Theorem

1. Indeed let u and u, be the positive solutions of
e,R R

(19) - A“s,R = P ue?R in Bp
with U R = 0 on aBR
and

(20) - Bup = o uRa in By

with up = 0 on BBR .

We now use the same device as in Appendix II (method II), namely, we multiply (19) by
up and (20) by u, p- Integrating by parts we find

1—a) = jB (pE - ,o)uR “EK,IR

a a_ 1—a
JB P U RUR (Yg R VR
R R

and thus

a a;,, l—a 1-a
JB pu g ug (4 g —ug )¢ Ce
R

where C is independent of R. Passing to the limit as R — = (and using Fatou) we
obtain

u —a_nl—a) < Ce .

Sy
B
™
=
™
1~
=
=]
—
m

Using (18) we have
j’ PR {ul—a _ gl—a) =g

and thus pu® = py® Hence A(u - u) = O and therefore u = u (by the condition at
infinity).

The last step involves the use of parabolic equations as in [8]. As we already mentioned
in the Introduction if u{x} is a solution of (1) then
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B cut/®(x)
v(x, t) = ————————1-“ s /(m-1)
satisfies
(21) p -g% = Av™®

where m = 1/a and C = (m-1)" 1/(m—1)' Our proof of uniqueness for problem (1), (12)

relies heavily on existence, uniqueness and comparison properties of solution of (21).

Step 3. We recall first a well-known fact about bounded domains (see e.g. [2]).
Let @ c B® be a smooth bounded domain, p € L%(Q), p2 6> 0 on 0. Then given
any v, 20 onm Q, vy € L®(0), there exists a unique solution v(x,t) of the problem

) g{ -AV® =0 in @ x(0)
(22) v =90 on 99 x{0)
v(x,0) = vy(x) in Q2

Moreover if there is another solution V(x,t) of (22) with ¥(xt) > 0 on
Bx(0,8) and ¥(x,0) > vy(x) then V(xt) 2 v(x.t).

Let u be the minimal positive solution of (1) in the sense of Theorem 1. Let u be
any bounded positive solution of (1) satisfying (12). By Appendix I we know that

lim u=20.
R-w SR

Let YR be the solution of

av.
p mn - Ava 0 in Bp x(0,m)

vR(x,t)
vp (x0) = Cmul/m(x) in Bp

0 on aBR x(0,w)

By comparison in bounded domains we see that

¢ ot/ P(x)
(23) VR(X:‘) < _(_:T)f/(m‘l)
and also
Crt/™(x)
x8) < .
(24) vR(xt) ¢ 7@

As R 1 o the sequence vp increases to some limit vm(x,t) which satisfies
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lixg
(25) Py — A T =0 in R (0, o)
and
(26) v (x0) = C u'/M(x) .
Moreover we have
¢!/ Bx)
(27) v (xt) < m/(m_l)
c.ul/®(x)

We already have a solution of (25), (26) namely h /(m-1) - We claim that

Cmu1 / o) .
(28) v, (xt) = m/(m_l) = v(x,t)

For this purpose we multiply

a - ~
pa—{(v—vw)——A(vm—-vI:)=0
by the function K(x} = ¢ [ﬁn_z - %n—2] and integrate over Bp x(0,T). We find

) T
JBR,,(X) (v - v K(x)dx| _p + Jo(vm AT

T

_ > m

__JOJ W - v.™) K5 ar
Bg

The integral on the right hand side is bounded by
c T,f u
Sr

which tends to zero a8 R~ w. Thus v = A (since p > 0). Passing to the limit in (24)
we find
1 1
Cgu/ P (x) o Cmt/P(x)
(t + /1) = RVICE

Letting t — o we conclude that u < u.
Remark 5. Assume p has property (H). As we know from Appendix I

lim U=20
R-m SR

where U = Ln_z # p, and thus lim inf U = 0. It may happen that U(x) does not
x| | x|

tend to zero as |x| — w . Here is a simple example for n > 4. Let ¢{x’) be the
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solution of

“A, ¥ = px') in B!
[ my = 0

where p € Cg (Rn_l), 220 and p not identically zero. Then

U = #x)  x = (g, x)
provides such an example since U(xl, 0) = ¥(0) does not tend to zero as
lel ~— «. In such a situation there is no solution u of (1) which tends to zero at infinity

because of the estimate from below g
in Theorem 1).

e, (1 — a) U (see the proof of necessary condition

The uniqueness question becomes easier under a stronger assumption
Theorem 2’. Assume there i3 a solution U of (2) such that

(29) lim U(x) = 0.
[x]=+ =

Then there erists a unique positive solution u of (1) such that
lim u(x) = 0.
[x[- o

Proof. The existence part is clear since we already know that there is a solution u of (1)
such that u < CU. For the uniqueness we could invoke Theorem 2 but we present instead a

simple argument due to Louis Nirenberg.

First we change the unknown. As in the proof of Theorem 1 we set

v = 1 ul-a
“T-a
so that we find
(30) —av-Swit =y

for some positive constant C (depending on a). Uniqueness holds for (30) since the
function 1/v is decreasing in v. More precisely, suppose we have two solutions v, v, of
(30) with lim v, = lim v, =0. Then w =v, - v, satisfies

jx|-o [x]-~a

C 2 _
v2|Vv2|w-—0.

C
—AW—'—V—IV(V1+V2)'VW+VI

Since the coefficient of w is nonnegative we may use the maximum principle to conclude
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that w = 0.

Remark 6. Clearly if p is a radial function satisfying (H}) then (29) holds. It alsoc holds if
p is bounded by a radial function satisfying (H).

4. Some generalization
Our methods extend to more general problems of the form

- Au = p(x) f(u) in R®

under suitable assumptions of f and in particular f(u) behaves like % near u = 0.
For simplicity we restrict our attention to the model problem
f(u) = u¥(1-v), ie

(31) - Au = p(x) u¥(1-u) in R" .

Theorem 3. Assume p satisfies (H). Then there is o unigue solufion u,
0 <u<1 of (31) such that

(32) lim inf u(x) =0.

(x| ~ o

Proof. For the existence part we proceed as in the proof of Theorem 1 (sufficient condition).
We obtain a minimal solution u with u <1 and u < CU. For the uniqueness we
proceed in two steps.
Step 1. Let u be any solution of (31), (32). Then there exists some e > 0 such that
(33) eusu.
It is useful to introduce the unique positive solution v of the problem
- Ay = p v in R
(34)
lim inf v(x) =0
[x]-o
Note that u is a subsolution for (34) since

u%1-u) < u®

and therefore, by monotone iteration and uniqueness of v, we obtain
ufv.
Next, we note that for € > 0 small enough ev is a subsolution for (31) since

- Aev) = epv® < plev)¥(1—v).

It follows that ev < u, the minimal solution of (31) (to justify this we use comparison in
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By and thenlet R — «). Thus (33) holds.

Step 22 We now follow the same technique as in Method III of Appendix II. Let u be any
solution of (31), (32) and let

A={telo,1]; tugu}.

We claim that 1 € A. Suppose not, that

tg = sup A< 1.
By Step 1 we know that ty > 0. Fix K large enough so that the function
f(t) + Kt is increasing on [0, 1]. We have
(35) - Ag - tgu) + Ke(g ~ tgu) 2 pltgu) - tf(u)].
Choose €>0 small enough so that

tg - tg 2 e(K+1) .

We claim that
(36) - A(u-tgu—eu) + Kp(u-tju—eu) > 0 .

Indeed we have by (35)
—A(g—tou—eu) + Kp(g—tou—-eu) 2 plf(tgu) - toi(u) — ef(u) - eKuyj .
But
1 1
f(tqu) - tof(u) - ef(w) - eKu = (tf-tg<h® + (tgt5 T et —eKu
2 eKu® — eKu 2 0

since ugl.
By Kato's inequality {see [9]) we have

A(t0u+eu—g)+ > A(t0u+eu—g) sign+ (tguteu-u) .

Using (36) we deduce that
A(t0u+£u—g)+ >0,

ie., the function ¢ = (t0u+eu—g)+ is subharmonic. It follows that, for any x,
W(xg) S{ 5. (x )‘P
R\"0

where SR(XO) denotes the sphere of radius R centered at x4 But

® < (tgte)u ¢ (tgte)v and we know (see Remark 1) that
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lim v=20
R-a SR(xO)

(since the origin may be shifted to any point xO). We conclude that ¢=0 and thus
(t0+e)u < u. Hence tyte € A, which contradicts the maximality of tg:

Appendix I

Throughout the paper we have often used the property (H), namely that the equation
(A1) -AU=f in R"
has a bounded solution. We discuss here some equivalent forms and some comsequences. In
what follows we always assume that f € LTOC(RH), f>0 ae and that f is not
identically zero. Let up be the solution of

~-Au, = f in B
(A.2) [ R R
up =0 on 6BR

Note that up is a nondecreasing sequence of positive functions (in BR) for R large

enough. Moreover up is given by

(A3) ) = [ Gplx) 1) ay
R

where GR is the Green's function relative to BR and zero boundary condition.

Let
u(x) = lim uR(x) (possibly + o).
. R

Note that, by monotone convergence of GR’

u(x) = cJ.

n_2f(Y)dY = Ln_2 «f
g x| Ix]

(possibly + =), where c/|x|n"2 is the fundamental solution. Remark that there are only
two possibilities, either um(x) =+ o VYx or uw(x) < + o Vx. Indeed suppose for example
that llm(ﬂ) < + w

Write

um(x)=cJ. ) +c ()

n-2 n-2
Iyl < 2ix) XV Iyl > 21x| P
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The first integral is finite (for each fixed x) while the second integral is bounded by

982 ¢ I _::Eﬂn—Z dy. Hence u (x) < o

If we make the assumption that

um(O):(:J—f(-'Ll dy < o

-2
lyl ®

then um(x) ig finite for each fixed x but it need not be uniformly bounded on R".
Lemma A.l. f satisfies property (H} iff

(A4) Lcc—l"'z « f e L°@®Y) .

Proof. Suppose first that (H) holds. By adding a constant we may always assume that

U3>0 in R® By the maximum principle
up <U on BR
and therefore

C
(A.5) um = Fn_2 «1<U .

Conversely, the function _‘c_l a-g * f provides a bounded solution of (A.1).
X

Since U could be any nonnegative solution of (A.1) we have

Corollary A.2. If (H) holds then u W the minimal positive solution of (A.1).
As a consequence of minimality we have

Corollary A3. If (H} holds then

lim inf u (x)=0.
[x] #» ©

In fact, any bounded solution U of (A.1) such that

lim inf U{x) =0
[x| -a

coincides with u. This follows from ithe fact that the difference of any two bounded

solutions of (A.1) is a bounded harmonic function and thus it is a constant.
A stronger way of expressing that u_ tends to zero at infinity is the following

Lemma A4 Suppose um(x) <w VxeR' then

lim u =9
R-w SR ®
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where /J’ denotes the average on the sphere of radius R.
S
R

Proof. By Fubini we have

:{'SR u(y) S, = ¢ Jmnf(x) ‘;{n—l [ J _dsl_g]dx

iyl RIX—YI“_
y -
Note that
R \n-2 |
) = J ds _ cn(m)“ if |x| >R
o R|x—-—y] -2 1(0) if |x] <R
with

1(0) = I %2 = CR
lyl=R

(this is a comsequence of the fact that I(x) is harmonic in [x| < R and in |x| > R;
moreover I(x) = I(|x|) and in addition I{w) = 0).
Hence we have

{SH“’:R_S-’J f(x)dx+cj —T(%_?dx
X
R jx|<R |x|>R

Clearly the second integral tends to zero as R — . We estimate the first one by

_%EJ f(x) dx + C j flﬁ_ dx
R x
1x|<RO Ry<ix|<R

We first choose RO 80 that

f(x
J agdx <e
x|

RO<|x|

and then R large enough so that

TEEJ f(x) dx < € .
R
|x|<Ryg

Lemma A5. Any bounded solution U of (A.1) such that
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coincides with u.

This i8 clear since the difference of two bounded solutions of (A.1) is a constant.

Lemma A.6. Assume (H). Let Uel® be a function with AU € LY satisfying

loc
- AU < f in R®
and
*U—’O 28 R— o .
SR
Then USum.
Proof. Set g=-08(u,-U)20.
Since }’s(um«U)——»O as R—o
R

we may apply Lemma A.5 to conclude that

c
u ~-U=— +g 20
L3 |x|n—2

Appendix II

Here we briefly review several proofs of uniqueness for the problem

— Au = p{x) f(u) in @
(A-6) [ u>0 in 0
u= %0 on 0

under the assumptions that %D is decreasing, Q is a smooth bounded domain and p > C

Method I This is the method introduced in {1}. Let u, amd u, be two solutions of

(A.6). We have

A7) _ Auy N Au, _ m (u,)

Uy ) b1 Uy

Multiplying (A.7) by (u - u3) we obtain
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) o)

2 2
Yuy ~ ug) .
u; Uy 1 2

u U,
1 2 2 2
Jqul ~ g Mgl 170y - g vy = J.p(

It follows that u; = u, on the set [p > 0]. In particular pf(u)) = pf(uy) on 9. Going
back to (A.6) we see that u; = u,.
Method I Let u; and u, be two solution of (A.6). We have

f 1
(A8) = (Bup) uy + (Buy) vy = pujuy %Z - —(_‘t%))

Integrating (A.8) on the set [u; > u,] = E we obtain formally

du du, f(u,) f(u,)

1 2 1 2
‘Ja_u“z’Lj b"u‘“1=j"“1“2( 0, u2)
OF ) E

Note that u; = u, and ?,a—u(u1 -uy) <0 on OE. Thus the lefthand side is nonnegative

while the integrand on the righthand side is ponpositive. Similarly, using F = [u1 < “2]’

we are led to
£(u;) f(“g)

qu1“2|u u, =0
Q 1 2

We conclude as above.

To make this argument rigorous we proceed as follows. Let @ be a smooth
nondecreasing function such that #(0) = 0 and 4(t) =1 for t 21,
ft) = ~1 for t < -1. Set

6.(t) = #(t/¢)

Multiplying (A.8) by 05(111 - uy) and integrating we obtain

J[(Vul)-u2 = (Vug)-uy] 62(u; - ug)-¥(uy - uy)

f(u,) f(u,)

A9 2

() = Jomuy oot - =) Aoy - vy
Clearly LHS » J(Vuz)(uz —uy) 02(uy - uy)-¥(u; - uy)
Note that

JVuZ(uZ - uy)li(uy - uy)¥(u, - u,) = - J‘qu\?'ye(u1 - )
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where 7(t) = J;s fe(s) ds .
Since |7 (t)] < Ce and Au, € L” we see that

LHS > -C e .
Going back to (A.9) we obtain, as € — 0,

J- f(u;) 1(uy) 0
p Ny [ —=| =
172 Uy u,
Method II.  This is a variant of Krasnoselkii's method [10]. Let u; and u, be two

solutions. Let
A={te0l}; tu <u, on O}.
Clearly A contains a neighbourhood of 0. We claim that 1 € A . Suppose not, that
ty = sup A<l
Then
- Ay, - tony) = » f(ug) -t o f(uy).
Fix a positive constant K large enough so that f(t) + Kt is increasing on
[0,Max uy]. Then
- Auy - tguy) + Ko(uy - touy) = flf(uy) + Kuy — t4(f(u;) + Kuy)]
2 Alf(tgyy) + Ktguy — t4(f(u;) + Kuy)] = plf(tguy) — tof(u)] 2 0

(the last inequality follows from the fact that f(u}/u is decreasing). On 00 we have
iy =gy = (1 -t) 920

We distinguish fwo cases:
Case 1: ¢ = 0. Using the strong maximum principle we see that either
Uy —tgyy >0 on Q with 3_17(“2 - toul) < 0 on &1 . Then, clearly there is some

e > 0 such that u, - "0“1 > € ;. Thus to + ¢ € A. Impossible. Or uy - touy = 0.
This case is also impossible since we would have, by the equation pf(u,) = t pi(ny), but

f(tgu,) > tof(u;) -

Case 2: ¢ is not identically zero. We claim that there is some € > 0 such that
wsuz-tOuIZEul.
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Suppose not, that for every € > 0 there is some point X € 1 such that
wix.) < eul(xs) .
Cleatly x_ ¢ 8 (for e small). Choosing a point of minimum for the function (w - eu;)

we may also assume that
Vw(x,) = € Yu(x.) .

As € — 0 (through an appropriate sequence) X, — X € 1 such that
w(xO) <0 and Vw(xp) =0

It follows that w(x;) = 0 and thus x, € &1 . This contradicts the strong maximum

principle since we have

w>0 on 49,

[—AW+pr20 in 9,
w not identically zero.

Method IV. This is a variant of Nirenberg's method already presented in the proof of
Theorem 2’. It requires further restrictions on f, namely, f is positive, concave and

dt
fhtyee
We use the new unknown

v=J‘“ dt
o T8

or in other words u = h(v) where h satisfies

b’(s) = (h(s)) -

The equation for v becomes
—Av - £ E)|WIZ=p.

Uniqueness holds provided the function f/(h(v)) is nonincreasing in v (see the proof of
Theorem 2’). This follows from the assumptions on {.

Acknowledgements. We thank H. Berestycki, E. Gluskin, A. Edelson, H. Egnell, D. Eidus, R.
Kersner and L. Nirenberg for useful discussions.

Part of this paper was written while both authors were visiting IMA at the University of
Minnesota. The second author also thanks the Université Paris VI and Rutgers University for
their hospitality.

105



(1]
2

(6]
1

(8]
B
[10]

[11]

Brezis— Kamin

References

H. Brezis — L. Oswald, Remarks on sublinear elliptic equations, Nonlinear
Analysis, 10 (1986), p. 55-64

E. DiBenedetto, Continuity of weak solutions to a general porous medium
equation, Indiana University, Math. J. 32 (1983), p. 83-118

A.L. Edelson, Asymptotic properties of semilinear equations, Can. Math.
Bull 32 (1989), p. 3446

H. Egnell, Asymptotic results for finite energy solutions of semilinear
elliptic equations {to appear)

D. Eidus, The Cauchy problem for the nonlinear filtration equation in an
inhomogeneous medium, J. Diff. Eq. 84 (1990), p. 309-318

D. Eidus ~ S. Kamin, in preparation

P. Hess, On the uniqueness of positive solutions of nonlinear elliptic
boundary value problems, Math. Z. 154 (1977), p. 17-18

S. Kamin ~ P. Rosenau, Nonlinear thermal evolution in an inhomogeneous
medium, J. Math. Phys. 23 (1982), p. 1385-1390

T. Kato, Schrddinger operators with singular potentials, Israel J. Math. 13
(1972), p. 135-148

M. Krasnoselskii, Positive solutions of operator equations, Noordhoff
(1964)

M. Naito, A note on bounded positive entire solutions of semilinear
elliptic equations, Hiroshima Math. J. 14 (1984), p. 211-214

Haim Brezis Shoshana Kamin
Université Paris IV Raymond and Beverly
4, pl. Jussieu Sackler Faculty of Exact Sciences
75252 Paris Cedex 05 Tel-Aviv University
and Tel-Aviv, Israel

Rutgers University
New Brunswick, NJ 08903

{(Received July 25, 1991;
in revised form October 7, 1991)

106



