
JOURNAL OF FUNCTIONAL ANALYSIS 101, 145-161 (1991) 

Regularity of Minimizers of Relaxed Problems 
for Harmonic Maps 

FABRICE BETHUEL 

ENPC-CERMA La Cow-tine 93167. Noisy-Le-Grand Cedes. France 

AND 

HARM BREZIS 

UnioersirP Pierre et Marie Curie, 
4, place Jussieu, 75252 Paris, Cedex 05, France, and 

Rutgers Unioersity, New Brunswick, New Jersey 08903 

Communicated by H. Brezis 

Received July 19, 1990 

We prove that every minimizer on H’(R; S’) of the relaxed energy 
5 IVU~~ + 8xlL(u), where 0 < I < 1 and L(u) is the length of a minimal connection 
connecting the singularities of u, is smooth except at a finite number of points. 
c’ 1991 Academic Press. Inc. 

Let Q c R3 be a smooth bounded domain. Set 

H’(Q; S2) = {u E H’(Q; R3); u(x) E S2 a.e. 1, 

where S2 is the unit sphere in R3. Given a boundary data cp: &2 + S2 we 
define 

H~(SZ;S2)={u~H1(SZ;S2);~=~on asz). 

If u E H;(Q; S2) is smooth except at a finite number of singularities in 
Q and if moreover deg cp = 0, then the length of a -minimal ‘connection 
connecting the singularities has been introduced in [BCL] and is given by 

where (P,, p2, . . . . pk) are the singularities of positive degree (counted 
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146 BETHUEL AND BREZIS 

according to their multiplicity), (n,, n,, . . . . irk) are the singularities of 
negative degree, d is the geodesic distance in Q, and the minimum is taken 
over all permutations of the integers ( 1,2, . . . . k ). (Since deg cp, iiR = 0 the 
number of positive singularities is the same as the number of negative 
singularities.) 

For any UE H’(Q; S2) the vector field D(u) defined as follows 

D(u)=(u.u,. A u,,u.u, A I(,, u.u, A U>.) 

plays an important role (see [BCL] ). Set 

R={u~H’(Q;S~);~issmoothexceptata 

finite number of singularities ) 

and 
R, = R n H&Q; S’). 

Recall (see [BZ]) that R is dense in H’(f2; S2) and R, is dense in 
Hk(Q; S’). If UE R (with singularities (a,)) then 

div D(U) = 47~ c deg(u, ~,)a,. 

If UE R, then (see [BCL]) 

L(u) =& sup 
0 

(Jacq)[do . (1) 
;.n+iw f2 

D(u).Vcdx-I 
PR 1 

llv;ll I =2 1 

Clearly this makes sense for any UE Hb(Q; S’) and we shall use formula 
( 1) as a definition of L for a general u E Hi(Q; S’). By a result of [BBC], 
L is continuous (and even locally Lipschitz) on Hb. 

The functional 

F,(u)=j IVulz+87rAL(u), 1E co, 11 (2) 
R 

introduced in [BBC] has some remarkable properties. In particular, it is 
weakly lower semicontinuous for the weak topology on Hi. Thus 

Min F,(u) is achieved 
ueH:, 

(3) 

and we recall that minimizers of F2 are (weakly) harmonic maps, i.e., they 
are weak solutions of 

-Au=u IhI on Q. 
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For A=0 it is known (see [SUl, SU2]) that mimizers of (3) are smooth 
except at a finite number of points. Our main result asserts that this is still 
true for i E [0, 1). 

THEOREM 1. Every minimizer of F;. is smooth on a except at isolated 
singularities. 

For ,I = 0 it is known (see [BCL]) that the singularities of minimizers 
have a simple form; i.e., if x0 is a singularity then, for some rotation R, 
u(x)? +R((s-x,)/1x-x,1) as s-+x0. In particular all singularities have 
degree + 1. This last property can be established for I. small, but it is an 
open problem for 1 large. 

Unfortunately, our arguments do not give any information about the 
nature of singularities when ,I = 1. The case ;i = 1 is very important 
(because it corresponds to the relaxed energy; see [BBC] ), and it would be 
extremely interesting to decide whether minimizers of F, are smooth. Par- 
tial regularity results for minimizers of F, have been obtained in [GMS2]. 

The proof of Theorem 1 is divided into several steps. 

Step 1. Minimizers of FA satisfy a reverse Holder inequality. 
Step 2. This is used to prove an “c-regularity lemma.” 
Step 3. One concludes by a blow-up technique (similar to the one 

used by [SUl]) that singularities are isolated. 

1. A REVERSE HOLDER INEQUALITY 

The usefulness of “reverse Holder inequality” was originally discovered 
by Gehring. It has been extensively used to establish partial regularity (see, 
e.g., Giaquinta’s book [G] and references therein). We shall follow a 
technique recently introduced by [HKL] in variational problems involving 
S*-valued maps. 

In what follows we fix I E [0, 1) and some minimizer u of FA on 
H@; 9). 

THEOREM 2. There exist constants q > 2 and C (depending only on A) 
such that 

(4) 

.for every ball B, such that B,, c 52. 

We shall use the following: 
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LEMMA 1. Let B, be a ball contained in 8. Then 

V~EH’(B,;S~) suchrhatv=uondB,. 

Proof Set 

W’ = 
( 

.?I on Br 

u on Q\B,. 

Since w E Hi we have 

F,(u) 6 EM, 

i.e., 

I jvuj ?- + 87tlL( u) d J \vuq 2 + 8nlL(W) 
R Q 

and therefore 

1 lVu12 + 8x1L(u) d j IV~~~Z + s~RL(~~!). 
BI & 

On the other hand, 

1 
!)=- sup 

4x ;:f24rw 
D(u).V;dx-[ (Jaccp)ido 

x2 
IIWI-4 s 1 

and 

lq M’ 
1 

)=- sup D(bv).V[ dx - j (Jac cp)i da 1 . 
4x ;:Q-IW (7Q 1 

IIWI,. G 1 

It follows that 

L(W)-L(u)<-& :s,uPD VW 
; - 
llv;ll ici 6 1 

) - D(tr)).V[ dx 

1 

=4n Y (D(w) - D(u)).V[ dx 

IIWL s I 
1 

(5) 

(6) 

(IVvl’+ IVu12) . 
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Combining this with (6) we obtain 

We also recall the following result of [HKL] 

LEMMA 2. There is a universal constant C such that, for every 4 E Rs3, 

Min 
CE H’(B,;S2) s WI2 6 c IIVT4 L?(?B,) IIU - 511 LqPB,). B, 
L’=“OnPB, 

(7) 

For the proof we refer to [HKL, Appendix]. The idea is to consider the 
usual harmonic extension U of u las, (with values in B3) and then some 
appropriate radial projection of U on S2. 

Proof of Theorem 2. Combining Lemma 1 and Lemma 2 we obtain 

We now follow the argument of [HKL, Theorem 4.11 to deduce that for 
every 6 > 0 

with p = 615. 
This implies, using Holder’s inequality, that 

i.e., 

f IVu12<166j 
B, BZ, 

/Vu12+;(f 
&r 

IV,,)‘. 

Fixing 6 < l/16 we may now apply this reverse-Holder inequality to 
conclude the existence of a q > 2 such that 
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2. &-REGULARITY 

In what follows, we fix i E [0, 1) and some minimizer u of FA on 
Hp2; S2). 

THEOREM 3. There is some .zO > 0 (depending only on A) such that if 

;lB IVUl’<&” for some ball B,, 

then IA is smooth on B,:, (and u is a minimizing harmonic map OFT B,:, in the 
usual sense). 

The proof relies on several lemmas. 
Set for p E (0, 1) 

WI; = {a&, IPOJ <p} 

w; = (OES’, IPal >p), 

where P: S’ --+ @ denotes the stereographic projection. Note that, as p -0, 
area ( W,; ) - np’. 

LEMMA 3. Let G c R3 be a smooth bounded domain. There exists 6 > 0 
(depending only on % E [0, 1) and not on G) such that if q!~: iiG -+ S’ and 
t+b(SGj c Wb then ever)’ v E Hi(G; S’) satisjjing 

1 
IVoI < Min J * IVn,12 + 8nlL(v) (8) 

G WE F&G;S21 0 

is smooth on G. 

Proof of Lemma 3. For p E (0, 1) (to be determined later) let 

G; = (xEG; U(X)E W; ;. 

The proof is divided into three steps. 

Step 1. We have 

J IVv1228~(1 -C’~*)L(u) (9) 
G&l+ 

for every L’ E Hj,(G; S’) with Il/(dG) c W; (C is some universal constant). 

Proof of Step 1. By density (see [BZ]) we may always assume that t’ 
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has just a finite number of singularities. Following [ABL], we have, using 
Federer’s coarea formula, 

For a.e. g E W,’ , o -‘(a) consists of curves connecting the singularities (and 
possibly some closed loops). Note that there are no curves connecting the 
singularities to $(dG) c W,: . Thus 

Yf’(o-‘(a)) 2 L(u) for a.e. a E Wlf , 

and consequently 

I 
G: 

IVu]* 2 2(area W:)L(tj) 

3 874 1 - Cp’)L( u). 

Step 2. Suppose as above that $: aG + W;. Then 

for every u E Hb(G; S2) and every p > ,/%. 

Proof of Step 2. Fix a map @: S’ -+ S* satisfying 

Q(P) c WA> 

@ = Id on W> 

IV@1 6 1 on S’ 

IV@1 6 /I’ on W,:. 

To construct such a @ one can, using sterographic projection, define 
@: @ -+ C by 

@(z) = z for Iz] <$ 

It is clear that IV@] < 1 everywhere and IV@\ d~4/]z]2 for IzJ 2~‘. In 
particular IV@] <p* for Iz] > p. 

Given u E H k, set 
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so that u’ E Hi(G; S2) (since p > 42). We have 

This proves Step 2. 

Step 3. Proof of Lemma 3 Completed. Let v satisfy (8). By ( 10) we 
have 

and thus 

Combining this with Step 1 we have 

8x( 1 - p2)( 1 - C/i’) L(o) d 87cAL( u). 

Now choose ,u > 0 small enough so that 

(l-/.?)(I-c/+4 

and then choose 0~6 <p2. It follows that 

L(o)=O. 

Going back to (8) we see that u is a minimizing harmonic map. We may 
now invoke [HKW] to conclude that u is smooth (since $(aG) is 
contained in a hemisphere). Alternatively, we may also invoke [SUl] 
together with the fact that L(u) = 0. 

This concludes the proof of Lemma 3. With its help we are going to 
prove Theorem 3. 

Proof of Theorem 3. We split the proof in two steps. 

Step 1. Let B c 52 be a ball such that 

UI~B E H’ and u(dB) C W,, (11) 
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where S is defined in Lemma 3. Then 

where L, denotes the length of a minimal 
singularities of u in B (without connections to 
is smooth in B. 

Proof Let u0 be a minimizer for 

153 

8nAL,(u), (12) 

connection connecting the 
the boundary). Moreover 14 

min 
t~E&B:S*) f 

[VU1 2. 
tZ=UOndB 

By (11) and [HKW], u0 is smooth inside B. Set 

i 
UO on B 

it’ = 
24 onQ\B. 

Since u is a minimizer for Fl on Hk(Q; S’) we have 

Thus 

1 lvu12 + 8dL(u) < 1 IVuo12 + 87dL( w). 
B B 

On the other hand (using (1 )), 

L(w) -L(u) < L(w, u), 

where 

(13) 

(14) 

But 

jE Wu,).Vi = J-, (Wu,).n)i. 
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(Since u,(B) c W; by [HKW] and so we may approximate uO by a 
sequence of smooth maps converging to u,) in H’(B; S”) (and also in 
H’( ?B; S”)). ) Therefore 

(since f.4 = u. on aI3). 

Combining (13), (14), (15) we find 

This completes the proof of Step I. 

Srep 2. Proof qf Theorem 3 Completed. Suppose 

for some ball B, c ~2 and some so (to be determined later). By Theorem 2 

we have 

1 

Fs s 1 4” 

IVLp<C y& ( > 0 * 
B, z r 

Thus 

*r.‘? 

1’ J‘ 
dp lVulYda< Cr3-Ys;I!Z 

r,4 -% 

and hence there is some rO E [r/4, r/2] such that 

that is, 

By the Sobolev imbedding we conclude that 
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where 

We now choose .sO such that C&z2 < 6 (6 given by Lemma 3). By Step 1 
above (with B = B,,) we conclude that u is smooth in B, and thus in B,,.4. 
This concludes the proof of Theorem 3. 

Remark 1. We may now assert that Xii,,(Z)=O, where Z is the 
singular set of u (as above u is a minimizer of FA on H,+,). Let 

and 

2= {aELI; &a)>O}. 

Note that if a E Q\2 then u is smooth in a neighborhood of a (by 
Theorem 3). Thus Z c 2. Since 2 is obviously contained in Z we conclude 
that Z = 2. Since u E H’(Q; S2) it follows by a standard covering argument 
that X,‘,,(Z) =O. In fact, since UE W:;z we conclude that X:0;q(Z) =0 
(see, e.g., [HKL]). 

3. THE SINGULAR SET CONSISTS OF ISOLATED POINTS 

We prove here that u has only isolated singularities by a variant of the 
blow-up technique of [SUl, SU23. Here we rely on a new monotonicity 
formula of [GMS2]. Let Z be the complement of the largest open set on 
which u is smooth. 

THEOREM 4. Z consists of isolated points (in ~2). 

Step 1. A Monotonicity Formula 

Recall that for a (standard) minimizing harmonic map u we have the 
well-known monotonicity formula 

This is not true any more for minimizers of FL but we have a variant of this 
formula due to Giaquinta, Modica, and SouEek [GMS2]. 

Let UER, and let p be the one-dimensional Hausdorff measure 



156 BETHUEL AND BREZIS 

uniformly distributed over a minimal connection (warning: the minimal 
connection need not be unique, and so p is not uniquely determined by u). 
Set 

where < is the unit 
,‘=(x---Yo)/I~Y--xoI. 

Using the formalism 
sense for every u E HL. 

vector tangent to the minimal connection at 

of currents (see [GMSl] ) these expressions make 
We have 

LEMMA 4. For ever)? minimizer of Fj. we have 

$ (i E(r)) k! a(r). 

In particular (1,/r) E( r) is nondecreasing in r. 

This formula has been established by [GMS2] when A= 1, but the same 
argument holds for any 1 E (0, 1). 

Step 2. The Blow-Up 

Let .x0 E Q be any point in Q and let u be a minmizer of FA on Hk. For 
simplicty we take x,, = 0 and we write B, = BJO). By Lemma 4, (l/r) E(r) 
remains bounded as r -+ 0 and so does (l/r) Se, IVul 2. Set 

u,(x) = u( ax), for XE B3. 

Then 

Therefore 

We claim that 

jE, /v&A*=; jE IVu,12dC as 0 -9 0. 
” 

2.4 CT” - v weakly in H’( B, ). 

i3V 
z=o. 

(16) 
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Indeed we have, by Lemma 4 

j?x(r)~=j;-$ 
0 

1 E(r) <-- E(c,~)- lim --0 
00 r-o r 

as cn + 0. 
On the other hand 

dr. 

It follows that jB,” (l/r) l&/&l2 + 0. But 

and the claim follows. Therefore we have 

(17) 

for some $ E H’(S*, S’). Following the strategy of [SUl, Part 4, Propo- 
sition 4.61 we now prove that z+, + u strongly in H’(B,). Since we have 

-Au, = u, IVu,l’ on B, 

and 

we deduce from standard elliptic estimates that Vu, is relatively compact in 
L:,,, (B,) and therefore for an appropriate subsequence we may assume that 
Vu,” + Vu a.e. on B,. In order to conclude that Vu,” + Vu in L2 it sufftces 
to know that 
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for some q > 2. This is a consequence of Theorem 2. Indeed, we have by (4) 

i.e., 

Thus we have established that u,~ -+ 1c/ strongly in H’. 
Finally we show that the singularities of 14 are isolated (in any compact 

subset of Q). As in [SUl], we follow the dimension reduction argument of 
Federer. Let (x,,) be a subsequence of singularities such that x, -+x,,=O, 
x,/Ix,( + IE S’. We choose cm = 2 ]x,I. Note that u,~ has a singularity at 
the point x,/(2 lx,1 ) + f/2. By Theorem 3, there is some E,, such that 

(otherwise u,~ would be regular at x,,/(2 Is,,] )). 
Since u,~ -+ tj strongly in H’, we may pass to the limit in (18) and 

conclude that 

1 . - r JB,,,,2, IVtq2 2 &07 for every r. (19) 

Since v(x)= $(x//lx,l) the left-hand side in (16) is of the order of 
s S~nBJ,,,j ]V,11/12. This is impossible since rj E H’(S’). This completes the 
proof of Theorem 4. 

4. BOUNDARY REGULARITY 

Here we complete the proof of Theorem 1 by showing that every mini- 
mizer of FL is smooth in some neighborhood of X?. This follows essentially 
the same pattern as above with the following modifications: 

(a) Reverse Hiilder Inequality near LX2 

THEOREM 2’. There exist constants q > 2 and Cl, Cz (depending onl? 
on tj) such that 

for any x0 E Xl. 
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To prove Theorem 2’ we adapt an idea of Jost and Meier [JM], namely 
we use as testing function in the inequality 

Fi( u) 6 Fi( w) 

the map 

w=I7,(u-g(x)(u-cp)), 

where ~$5 is the usual harmonic extension of cp, q is some appropriate cut-off 
function with support in B, (as in [JM, Lemma l]), and Z7, is the radial 
projection with vertex at some appropriate a (as in [HKL]). As in 
Lemma 1 of Section 1 we have 

We then proceed as in [JM] to derive the conclusion of Theorem 2’. 

(b) E-Regularity 

The counterpart of Theorem 3 is 

THEOREM 3’. There is some E, > 0 (depending onlv on A) and r,, (depend- 
ing only on rp) such that if 

1 - r JB,f.y,,nQ IVUI*<E, for some r<r,, and x,E&?, 

then u is smooth on B,;,(x,)nQ (and u is a minimizing harmonic map on 
B,,(x,) n 52 in the usual sense). 

The proof is essentially the same as the proof of Theorem 3, except that 
r0 is chosen so small that cp(%Qn B,(x,)) c Wb< for some suitable 6,. 

(c) Monotonicity Formula 

Set E(r) and cI(r) as in Section 4 (Step 1) except that B, is replaced by 
B,(x,) n Q with x0 E dS2. The counterpart of Lemma 4 is 

LEMMA 4’. 

$ :E(r) >ffz(r)-C 
( > 

for some constant C depending only on IIVCPII~~,~~,. 

580 101 1-I I 
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The proof has the same ingredients as in [GMS2] together with 
Lemma 1.3 of [SUZ]. 

(d) Blow-Up and Conclusion 

Let x,, E SQ and let u be a minimizer of FA on Hb. For simplicity assume 
that &2 is flat near x0 with outward normal (O,O, - 1). Set 

u,(x) = u(m) 

for x E Bl = ((x,, x2, x3) E B’; x3 2 0 1. As in Step 2 of Section 3, u,~ - c 
weakly in H’(B:) and &I/& =O. Therefore u(x) = rj(,u/l.xl) for some 
$ E H’(S’, ; S’). As above u,” is bounded in L”(B:) for some q> 2 and 
u,~ + r strongly in H’( Bl ). In particular r E WL,y(B: ; S’) and so 
+ E U’Q(SJ ; S’). On the other hand o is (weakly) harmonic and constant 
on 8s: n [x, = 01. Hence I,+ is weakly harmonic from from S’, into S2 and 
$ is constant on IX?+. Since tin kP’(S:) with q> 2, it follows (by 
bootstrap) that $ is smooth on St. Using a result of [L] we deduce that 
II/ is constant on Sl. Hence 

* 
! + lV~,12-=I for u small enough, 
4 

i.e., 
1 - y j,,,,,,,,, IVul’< E, for r small enough. 

By Theorem 3’ we conclude that u is smooth on B,.,(x,) AR. 

5. A VARIANT OF THE RELAXED ENERGY 

Here we assume that cp: dS2 -+ S’ is given and smooth but deg cp need not 
be zero. We fix LIE Hi(Q; S2) and we set 

D(u) - D(tl)).V; dx . 

(Note that L(u, u) = I!.(U) if deg cp = 0 and r is smooth.) The functional 

@j.(U) = j IVu[’ + &LLqu, u), iE[O, l] 

introduced in [BBC] is also weakly lower semicontinuous for the weak 
topology on H’ and minimizers of @A on Hk are weakly harmonic maps. 
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THEOREM 5. Assume u is smooth on J? except at isolated singularities 
then any minimizer u of Qi is smooth except at isolated singularities. 

Sketch of Proof Let S be the singular set of u. Using the same 
arguments as in the proof of Theorem 1 it is easy to see that on every com- 
pact subset of Q\S, u has only isolated singularities. It could still happen 
that singularities of u accumulate on S. This is excluded by a blow-up 
analysis centered at a point on S. 

Remark 2. We recall that in [BBC] we have proved that if deg cp # 0 
the minimizers of Q1(u) are distinct for a sequence (A,,). By Theorem 5 
these minimizers are smooth except at isolated points. For example, if 
q(x) = x we find infinitely many distinct harmonic maps with isolated 
singularities and such that u = cp on X?. 
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