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1. INTRODUCTION 

We consider the eigenvalue problem 

-du=lu+ JuIP-’ u in B 
in B 

on aB, 

(1.1) 
(1.2) 

(1.3) 

where B denotes the unit ball in RN (N> 3), 

N+2 
‘=,+2’ 

and I is a positive real number; for A < 0 Problem (I) is known to have no 
solutions. 

After detailed studies of the existence and properties of positive solutions 
of Problem (I) [BN, APl] interest has recently grown in solutions which 
change sign. We shall call such solutions “nodal solutions.” In this paper 
we shall discuss the existence of such solutions u of (I) which possess radial 
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symmetry for different values of il and we study the values of ,? when (IuIJ co 
becomes unbounded. 

Let pL1 be the first eigenvalue of -A on B with Dirichlet boundary 
conditions. Then we recall from [BN] that if N B 4 there exists a positive 
solution of (I), which must necessarily be radial, for eoery 1 E (0, pl), whilst 
for N = 3 there only exists a positive solution if A E (p1/4, 11,). 

With nodal solutions a similar phenomenon occurs, although at a dif- 
ferent value of N. Let ,u, denote the eigenvalue of -A on B with Dirichlet 
boundary conditions, which corresponds to a radial eigenfunction with 
it - 1 zeros. If N 3 7, then for every I E (0, Pi) Problem (I) has a solution 
with n - 1 zeros [CSS, S], whilst if N = 4, 5, or 6, there exists a number 
A* > 0 such that (I) has no radial nodal solution if ,? E (0, %*) [ABP]. The 
only paper we know of which deals with nonradial solutions is [FJ]. Here 
it is proved that if N > 4, then for every A > 0 there exist infinitely many 
solutions of (1.1 )-( 1.3). In view of Theorem A, these solutions cannot 
always be radial. 

In the context of radially symmetric solutions it is not necessary to 
restrict the dimension N to integer values, and it is natural to ask for the 
precise value of N-if any-at which the above transition occurs. For 
positive solutions it is well known to be N = 4. For nodal solutions it was 
recently shown to be N = 6 [ABP, AP2]. 

In this paper we shall focus on the behaviour of radial solutions of (I) 
which change sign when 4 d N < 6. For a discussion of such solutions when 
N > 6 we refer to [AP2]. We begin by proving the following nonexistence 
theorem. 

THEOREM A. Suppose 4 <N< 6. Then there exists a constant ,I* > 0 
such that Problem (I) has no radial solutions which change sign if,? E (0, I*). 

We then turn to the asymptotic behaviour of the values 1, of A which 
correspond to solutions u, with n - 1 zeros, as IIu,I( o. + co. For N = 3 it 
was shown in [APl] that 

1, -b (n - $)’ 7c2 as II4 m --) 00. 

For 4 <N < 6 we shall prove the following theorem. 

THEOREM B. (a) Suppose 4 < N < 6. Then for every n $2, 

42 -CL,-1 as lI4Jl n: + 00. 

(b) Suppose N = 6. Then for every n 2 2, 

AI -‘P%1 as lI4I m + 00, 

where ,un*-, E (0, pm - ,). 
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Remark. Just as the eigenvalues p,, of -A on B are related to the zeros 
p, of the Bessel function J,, where v = (N- 2)/2, through the expression 
PL, = Pi, so are the numbers ,u,* in part (b) of Theorem B related to the 
zeros p,* of the solution of the-nonlinear-problem 

N-l 
o”+- v’+u(l + Ivl)=O, r > 0, 

r 

through ,u: = (P,*)~, n = 1,2, . . . . 

u(0) = 4, u’(0) = 0 

Thus if 4 d N < 6 then as 11 uj/ o. increases from zero to infinity, the branch 
of solutions with n - 1 zeros moves from .LL,~ to p+, and so skips precisely 
one eigenvalue of the associated linear problem. For N= 6 the branch of 
solutions moves beyond CL,, ~ I, but stays away from zero, whilst if N > 6, it 
moves all the way back to zero (see Fig. 1). 

Remark. Nodal solutions for the related equation 

-Au=% IuJyp’ u+ Iu[~/(~-~)u in B, 

where 1 < q < (N + 2)/(N - 2), have been studied by Jones [J]. He showed 
(i) if q > 4/(N- 2), there exist nodal solutions for all 1 >O, and (ii) if 
q <4/(N- 2) there exists a neighbourhood of A = 0 in which there are 
none. More recently in was shown [K] that the second result can be 
extended to q = 4/( N - 2). 

IlUll i I\ 
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N-6 ---- 
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FIG. 1. Solution branches. 
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Let u be a radial solution of (I). Then we can write u = u(r), where 
r = 1x1, and u(r) is a solution of the two-point boundary value problem 

N-l 
un +- u’+lu+ IuIP--l u=o, O<r<l (1.4) r 

u’(0) = 0, u(l)=O, (1.5) 

in which primes denote differentiation with respect to r. By scaling r and 
u we can eliminate A. Setting 

p=$r, v(p)=l- ll(p- l)u(r) (1.6) 

we obtain 

N-l 
vu +- u’+u+ Iu~~-lY=o, P>O 

P 
(1.7) 

u’(0) = 0, 

and, in addition, the boundary condition at r = 1, 

u(R) = 0, (1.8) 

in which 

R=fi (1.9) 

We study this problem by a shooting argument and thus for every fixed 
y E R we solve (1.7) together with the initial conditions 

u(O) = Y, u’(0) = 0. (1.10) 

The problem (1.7), (1.10) has a unique solution u(p, y) which exists for all 
p > 0 and-as we shall see-has an infinite sequence of zeros, 

O<R,(y)<R,(y)< ... , (1.11) 

where R,(y) + CC as n -+ co. In view of (1.10) the eigenvalues A,, are related 
to the radii R, by 

J%(Y) = R%% n = 1, 2, . . . . (1.12) 

Thus we can study the properties of the eigenvalues I, of (I) through an 
analysis of the zeros of the solutions u(p, y) of the initial value problem 
(1.7), (1.8). 

Rather than studying (1.7), (1.8) directly we perform one more trans- 
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formation, which eliminates the term in (1.7) involving the first order 
derivative. We set 

Y(t) = U(P). (1.13) 

Problem (1.7), (1.8) now becomes 

y”+t-Ql+ lylP~‘)=O, o<t<cQ, (1.14) 

Y(t) -+ Y as t-ax, (1.15) 

where 

kc2 N-1 
N-2’ 

p=2k-3. 

It is this problem that we shall study in the following sections. In Section 2 
we establish some preliminary properties, in Section 3 we prove the non- 
existence of solutions in a neighbourhood of A = 0, and in Sections 4 and 
5 we investigate the asymptotic behaviour of 1,. 

2. PRELIMINARY REMARKS 

We consider the initial value problem 

y” + try(y) = 0, t<m (2.1) 

Y(f) + Y as t-co, (2.2) 

in which k > 2 and 

f(s)=s(l + l.YlP~‘), p=2k-3. (2.3) 

It is well known that, because k>2, (2.1) (2.2) has for every PER a 
unique solution, which we denote by y(t, y). 

We introduce two energy functionals, 

E(t)=?+ trkQy) (2.4) 

and 

(2.5) 

so5/ssil -I I 
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If y is a solution of (2.1), (2.2), we find upon differentiation that E(t) is 
a nonincreasing and G(t) a nondecreasing function of t. In particular we 
may conclude that 

G(t) 6 0) for O<t<co 

and thus that 

Iv(tv Y)I < IYI for O<t<oo, 

and that y’(t, y) is uniformly bounded on (0, co). Thus y(t, y) exists on the 
entire interval (0, co). 

LEMMA 1. (a) Equation (2.1) is oscillatory near t = 0; 

(b) The values of ly\ at the successive extremu, in the sense of 
increasing t, form an increasing sequence; 

(c) The values of Jy’l at the successive zeros of y, in the sense of 
increasing t, form a decreasing sequence. 

ProoJ (a) We write (2.1) as 

y”+t-%(t)y=O, (2.6) 

where 

u(t) = tl-k(l + Iy(t)\*-), 

(2.7) 

and compare it with the equation 

z”+ t-*(i+&)z=o (2.8) 

in which E > 0. Since for every E > 0, (2.8) is oscillatory near zero [H, 
Theorem 7.1, p. 3621 and, because k > 2, u(t) > (f + E) for t small enough, 
it follows by the Sturm Comparison Theorem that (2.6) is oscillatory near 
t = 0. 

Parts (b) and (c) follow immediately from the monotonicity properties of 
the energy functionals E and G. 

As a consequence we have 
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LEMMA 2. If y( T) = 0, then 

[y(t)1 < [y’(T)1 (T-t) for 0-c t< T. (2.9) 

ProoJ Let 

T*=inf(t<T:lyj>Oon (t,T)}. 

Then, by Eq. (2.1), yy” < 0 on (T*, T) and (2.9) follows for t E [T*, T). 
Next, let t < T* and assume that y(t) # 0. Then, because (2.1) is 

oscillatory according to Lemma l(a), there exists an interval (t,, t2) E 
(0, T) such that tE (tl, t2) and (yl >O on (tl, t2). By Lemma l(b) 

where z is the point in (T*, T) at which JyI reaches its maximum value. 
Since t < T* <z, it follows that 

Iv(t)1 < Iv’(T)I CT- t). 

Since t was an arbitrary point in (0, T*) the proof is complete. 

We shall denote the zeros of y(t, y) by T,(y), counting backwards, so as 
to be consistent with the numbering of the zeros R,(y) of v(p): 

(2.10) 

Thus we have 

... < T,(Y) < T,(Y) < T,(Y) < ~0. 

A detailed analysis of the asymptotic behaviour of the largest zero T,(y) 
and the slope y’(T,(y), y) as y + co was made in [APl]. Below we list in 
two lemmas those results which we shall need in the sequel. It will be 
convenient to introduce the number 

k, = (k- lp(k-2). 

LEMMA 3. (a) Suppose k = 3. Then 

T,(y)=2logyC1+4l)l as y-co. 

(b) Suppose 2 <k < 3. Then 

T,(y)=A(k)y6-2k[1+o(1)] as y-+00, 
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A(k) = kl;- 3 r((3 - k)l(k - 2)) T((k - 1 Mk - 2)) 
Q2m - 2)) 

LEMMA 4. For any k > 2, 

y’(T,bh y)=k,y-‘Cl+o(l)l as y-+c0. 

3. A NONEXISTENCE THEOREM 

In this section we show that if 4 < N< 6, then there exists a 
neighbourhood of A = 0 in which (I) has no radial solutions with nodes. In 
the notation of the previous section this means that we need to show that 
if 2$<k<3, then 

sup{T*(Y):y~(O,~)}<~. (3.1) 

This implies, in view of (2.9) and (1.12), that 

I* = inf{ A,(y) : y E (0, co)} > 0. 

Hence, since An+,(y) > I,(y) for every n > 1, it follows that 

Uy) 2 A* > 0 for y~(0, co) and n>l 

and thus that there exist no nodal solutions for 0 < 1 -C I*. 

LEMMA 5. Suppose 24 < k < 3. Then (3.1) holds. 

ProoJ Since AZ -+ pz as y + 0, it is sufficient to show that 

lim sup T2(y) < co. 
Y-ta, 

We use a Sturmian comparison argument, comparing the solution y(t, y) 
with the solmution z(t) = fi of the equation 

1 
z” +.g$ z = 0. 

Recall that y satisfies the equation 

y”++ a(t)y=O 
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in which 

a(t)= t2-k(1+ (yjZk-4). 

Hence, by the Sturm Comparison Theorem, y cannot have a zero on any 
interval [to, T,) on which a(t) < f. 

By Lemma 2, we have 

IY(C Y)l < T,(Y) IY’(Tl(Y)v YN for 0 < t < T,(y), 

and so, by Lemma 4, there exists a constant K> 0 such that 

Ir(r,Y)l<Ry for O<t<T,(y) 

when y is large enough. Thus, 

a(t)< t2-k[1 + (Ky-1T,(y))2k-4-J 

for y large enough. 
According to Lemma 3 we have when k = 3 

(3.2) 

(3.3) 

Y-‘mY)=~(Y-%Y) as y-cc (3.4) 

and when 2<k<3 

y-T,(y)= O(y5-2k) as y+co. (3.5) 

Thus if k > 24, then y -’ T,(y) is uniformly bounded for large values of y 
and so, by (3.3), 

a(t) <Vt2-k for 0 < t < T,(y), (3.6) 

where %? is some positive constant. If we then choose to = (4V)“(k-2), we 
conclude from (3.6) that u(t) < $ on [to, T,(y)) and therefore that 

T,(Y)<to for large y. 

This completes the proof. 

4. ASYMPTOTIC ANALYSIS WHEN 2;~ kc3 (4<~<6) 

In this section and the next, we study the asmptotic behaviour of the 
zeros T,(y) of the solution y(t, y) as y -+ co, and thus obtain asymptotic 
estimates for the eigenvalues A,, of Problem (I). 
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As we showed in the previous section, if 24 <k < 3 then 

Y(C Y) -0 as y-+co 

uniformly in compact sets. Thus we may expect y(t, y) to converge to a 
solution of the linear equation associated with (2.1), 

2” + t -kZ = 0, (4.1) 

whereas if k = 2f there is no reason to expect this. 
We use the method of variation of parameters to substantiate our 

conjecture. Let a(t) and P(t) be solutions of (4.1) so that 

a(t) + 1 and P’(t) -+ 1 as t+co. (4.2) 

Plainly, a(t) is uniquely determined, but P(t) is not. However, this will not 
affect the final result. In any case we have 

a(t) /l’(t) - a’(t) P(t) s 1. (4.3) 

Specifically we can take, with v = l/(k - 2), 

a(t) = A, 453,(2~t-~‘*‘) 

and 

j?(t) = B, &Y,(2vt-“9, 

where A,=v-‘T(v+l) if v~[1,2), B,= -v”sin(rrv)r(l-v) if v~(1,2), 
and B1 = -n. For further reference we note that 

a(t), p(t) = O( tk’4) as t +O. (4.4) 

We now introduce functions u(t) and b(t) such that 

y=aa+bp, y’ = ua’ + b/Y. (4.5) 

Such functions exist in view of (4.3). Solving for a and b we obtain 

a = -y’B + yp, b = y’a - ya’. (4.6) 

At t = T,(y), we have since y( T, ) = 0, 

4T,)= -Y’(T1, Y) NT,) 

btTl) =y’(T1, Y) atT1). 

Because T,(y) + 00 as y + co, we conclude from (4.2) and Lemmas 3 and 
4 that 

4Tl(Y)) = -Q4rKl+ 4111 as y-+00, (4.7) 
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where 

w(y) = log y/y if k = 3, and c~(y)=y~-~~ if kE(2, 3), (4.8) 

and 

Q=4ifk=3, and Q=k,A(k) if kE(2, 3). (4.9) 

Similarly we obtain for b that 

Wh))=~ Cl +41)1 

LEMMA 6. Let 2 <k < 3. Then 

41) = -QMr)[l + 41 )I 

b(t) = 44~)) 

uniformly on (6, T,(y)) for any 6 > 0. 

ProoJ: Differentiating (4.6) we obtain 

(4.10) 

and 

a’= t-k Jy(2-yp 

b’= -t-k (~l~~-~ya 

and hence, upon integration over (t, T,(y)), 

a(t)=a(T,)- s,” s-~ Iy12k-4yBds, (4.11) 

b(t) = b(T,) + s,” sck ly12k-4y~ ds. (4.12) 

In view of the asymptotic behaviour of a(T,) and b( T,) given in (4.7) 
and (4.10) we need to show that the integrals are o(w(y)) as y -+ co. Note 
that 

Mt)l d 1 and IP( d C mar(tli/4, t} on (0, 03 ), 

where C denotes some generic positive constant. Therefore, when t > 6, 

Tl 
SCk lY12k-4 yc.t ds < C{W(y)}2k-3 5 m .YCk ds = C,(6){o(y)}2k-3. 

6 
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Similarly, 

7.1 
SCk lY12k-4 ypds < C{W(y)}*k-3 S-~ WY ds 

f 

6 C{W(y))2k-3 s-3k14 ds f 
I 

O” s’-k ds 
1 

= C*(6){o(y)}2k-3. 

Thus, since 2k- 3 > 2 in the range of values of k we consider, both 
integrals are indeed 0(0(y)) as y --t co, and the proof is complete. 

Returning to y we conclude from (4.5) and Lemma 6 that 

Y(4 Y) _ 

Q)(Y) 
-Qdt) + 41) as y-tee 

and 

Y’(C Y 1 -= -Qu’(t) + o(l) 
4Y) 

as y+cc 

uniformly on compact subsets of (0, co). 
Let 

TI > T* > T3 > . 

be the zeros of a(t), z1 being the first one, so that a(t) > 0 on (t , , co). 

THEOREM 1. Suppose 2; -c k < 3. Then for n > 2, 

T,(Y) --f T,- I as y+co. 

Proof. It is clear from (4.13) that the zeros of y(t, y) converge to those 
of a(t), as y + co; what remains to be established is that T,(y) --‘zl as 
y+cO. 

Suppose to the contrary that T,(y) +r,asy-+~forsomeZ>l.Inview 
of (4.13), y(t, y) has a zero T*(y) which converges to z, as y + co. Because 
z1 > T ,  by assumption, it follows that T*(y) > T2(y) for y large enough. 
Hence, T*(y) = T,(y). However, T,(y) + co as y + 00 whence we have a 
contradiction. This proves the theorem. 

We finally return to the original variables r, u, and 1. Thus we set 
k = 2(N - 1 )/(N- 2). Following the transformations made in Section 2 
backwards, we find that the functions 

‘+%)=~(TI IX12-N)t I= 1, 2, . . . 
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satisfy 

-Ad,=PL,#, in B 

4I=o on i3B, 

where, 

pLI= (N-2)* ,/7N--) 

However, by (1.12) and (2.10), 

I,(Y)=(N-~)~ {7’n(y))-2”N-2). 

Thus we conclude from Lemma 6 that for n 3 2 

W) + PL,- 1 as y+co. 

This completes the proof of part (a) of Theorem B. 

(4.14) 

5. ASYMPTOTIC ANALYSIS WHEN k=2$ (N=6) 

When k = 2& Eq. (2.1) becomes 

y”+ t -5’2y(l + Iyl)=O (5.1) 

and, according to Lemma 3, the asymptotic behaviour of T,(y) and 
y’( T,(y), y) as y -+ co is given by 

T,(Y)=; rCl+41)1 as y+co, (5.2) 

Y’(T,(Y), Y)=; Cl +41)1 as y-+co. (5.3) 

Thus we can conclude from Lemma 2 that 

IY(C YN d 21 + o(l)1 as y-co, (5.4) 

i.e., y(t, y) is uniformly bounded on [0, T,(y)]. 
To estimate the asymptotic behaviour of the zeros T,(y) of y(t, y), we 

proceed in two steps. First we determine the location (to, y,) of the largest 
zero of y’( t, y), i.e., 

&(Y)=inf(tE(O, co): y’>O on (t, co)) 
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and 

Ye(Y) = Y(fo(Yh Y). 

Having done so, we approximate y(t, y) for r < t,. 
About (to, y,) we prove the following asymptotic estimates. 

THEOREM 2. Suppose k = 24. Then 

(4 Ye = - iC1 +oWl as y+co; 

(b) to(y) = 6~)~‘~ Cl + 41 )I as y+m. 

Before turning to the proof of Theorem 2, we establish a few preliminary 
lemmas. It will be convenient to use the abbreviations 

~Y)=Y’(TI(Y), Y) and 4~) = 4~) T,(Y). 

LEMMA 7. We have 

t;‘2<;(1+a)T1. 

Proof Integration of (5.1) over (t,,, T, ) yields 

TI 
lC= s s-5/2 IAs)l (1 + Iy(s)l) ds. 

10 

Hence, because Iv(t)1 CC on (0, T,) by Lemma 2, it follows that 

JC<C(~ +a) j” sc5’*ds, 
f0 

and thus that 

1 < fTl( 1 + ~)t,~‘*. 

The desired bound is now immediate. 

COROLLARY 1. We have 

lo(Y) ~ o 

T,(Y) 
as y+co. 

(5.5) 

(5.6) 

LEMMA 8. We have 

lim ‘vo(y)’ _ 1 
Y-z O(Y) . 
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Proof: By Lemma 2, we have 

IYOI = Mtoh G IV’(Tl)l (T, - to) < 02 

and so 

lim sup y< 1. 
Y-+00 

Thus, it suffices to prove that 

linl,f z> 1. 

Integrating (5.1) twice, we obtain for t < T, that 

(5.7) 

Hence, remembering that Iv(t)\ < 0 if t < T, we conclude that 

Il.(r)l>li(T,--)-rr(i+~)Slis~3’2ds 
f 

or 

/y(t)1 >K(T1-t)-20(1 +o)t-“2. 

By Lemma 7, t, < CT, 2’3 for some c > 0 and so JyOJ > J~(cT~‘~)I. Therefore 

Jyo( > K(T, - CTY’3)- 241 + o)(q3)--‘*, 

and hence 

ly,l/a> 1 + O(T;“2) as y-+00. 

Remembering that T,(y) + co as y --) co, (5.7) follows. 

LEMMA 9. We have 

lirn inf t:‘*(Y) 2 - 2 - lim inf( 1 + IvO(y)I). 
y-m T,(y) 3 y-m 

ProoJ: By the strict convexity of y on (t,, T, ), 

Iv(t)l > $$ CT, - t) on (to, T,) 
1 0 
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and so, by (5.6), 

IYOI T’ 
--T+, 10 5 

(T, -s)s-5’2 
( 

1+* (T, -s)) ds. (5.9) 
I 0 

Introducing the variable u = s/T,, and setting T = to/T,, we can write (5.9) 
as 

=; lyol (l+ lYol)to3’2Cl +41)1 as y-+00, 

because r + 0 as y -+ cc by Corollary 1. Thus 

g>; (l+ Iyol) Q$ [1+0(l)] as y+co, 

which, together with Lemma 8, yields the desired lower bound. 

COROLLARY 2. We have 

liminf!ii!T.W~? 
7-m T,(y) 3’ 

We can now readily complete the proof of Theorem 2 by means of the 
estimates (5.2) and (5.3) for T,(y) and y’(T,(y)). 

Proof of Theorem 2. (a) Since 

O(Y)= T, Y’(T,(Y)), 

it follows from (5.2) and (5.3) that lim, _ o. a(y) = f. Hence, by Lemma 8, 

lim IY~(Y)I = 4. 
y-00 

Because ye(y) < 0, the desired limit follows. 
(b) By Lemma 7 we have 

c3Y) < l lim sup - , 
7-m T,(Y) ’ 
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and by Lemma 9 and Theorem 2(a) we have 

Thus 

The proof is completed by means of (5.2). 

Having shown in Theorem 2 that the first local minimum of y(t, y) 
(coming from t = co) moves to t = cc as y --) cc, and that its value yO(y) 
tends to -$, one expects that the solution y(t, y) converges to the solution 
Y(t) of the problem 

Y”+tP2Y(l+(Y()=o, t>O (5.10) 

Y(t) + -f as t-to0 (5.11) 

when y --f co. In Theorem 3 we show that this is indeed so. 

THEOREM 3. Suppose k = 2;. Then for every t > 0, 

lim (t, y) = Y(t). 
y - a3 

ProoJ: We integrate (5.1) and (5.10) twice over (t, to). This yields the 
integral equations 

y(t) = y, - 1” (s - t)s-5’2f(y(s)) ds 
I 

(5.12) 

and 

Y(t) = Y(to) - Y’(t,)(t, - t) - 5” (s- t)s-“‘j-( Y(s)) ds, (5.13) 
f 

where now 

f(z)=41 + 14). 

For convenience we have dropped the reference to y. If we now write 

w(t) = Iv(t) - Y(t)l, 

subtract (5.13) from (5.12), and take absolute values we obtain 

I 10 

w(t) d A + B sc3’*w(s) ds, 
I 

(5.14) 
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A = YO - Y(fo) - to YXto), 

B= max{f’(z) : Iz( < 4) = 2. 

By Gronwall’s inequality, (5.14) implies that 

w(t) 6 Ae2+, t > 0. 

By Theorem 2, 

Y,(Y) - Y(tohJ)) + 0 as y-00 

and from (5.10), (5.11) we deduce that for to sufftciently large, 

(5.15) 

(5.16) 

O<t,Y’(t,)=t, Srn s-5’2f(Y(s))ds 
10 

3 O” 
<- to 

s 4 f0 
sc512 ds 

Hence, using Theorem 2 again we conclude that 

to(Y) Y’(fo(Y)) + 0 as y-00. (5.17) 

Together, (5.16) and (5.17) imply that A(y) -0 as y-+ 00, and thus, by 
(5.15), that for every t > 0, 

Y(4 Y) - Y(t) + 0 as y-00. 

Let us denote the zeros of Y(t) by r,*, and number them so that 

.‘. <z,*< ..* <t:<T1*<m. 

Because Y’(r,*) # 0 for every n >, 1, the following theorem follows readily 
from Theorem 3. 

THEOREM 4. Suppose k = 25. Then for every n > 2, 

T,(Y I-+ C- I as y-+co. 

For the proof we refer to the proof of Theorem 2. 
About the zeros rf, we have the following comparison lemma. 
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LEMMA 10. Let {T,,} be the zeros of the solution of the problem 

a” + t ~ 512a = 0, O<t<m, 

a(t) + 1 as t+co. 

Then 

7,*'7,, for every n 2 1. 

ProoJ: We first prove the lemma for n = 1. Suppose to the contrary that 
y > 0 on (zl, co). Then 

=a’(T1) y(r,)+ja t-“‘ay IyJ dt. 
?I 

Because the first term on the right side is nonnegative, and the second term 
is positive, we have a contradiction. Therefore r: > 7 1. 

Next, suppose that for some n 3 2, r,* < 7,. Then there exists an index 
m E ( 1, . . . . n - 1 } such that y(t) has one sign on (7,+ i, r,,J. Because 
l+lul>l on (7,+,, r,) this is impossible by the Sturm Comparison 
Principle. It follows that r,* > 7, for every n > 1. 

As in the previous section, we find, upon returning to the original 
variables, that 

p: = (N- 2)2 (&F-2/(-) = (pT)2, 1 = 1) 2, . ..) 

where p,? is the lth zero of the solution of the problem 

(5.18) 

N-l 
v”+- v’+v(l + Ivl)=O, P>O 

P 

v(0) = ;, v’(0) = 0. 

Comparing (4.14) and (5.18), we find that Lemma 10 implies that p,? < pLI, 
for all I= 1, 2, . . . . This completes the proof of the last line of Theorem B. 
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