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1. INTRODUCTION 

Consider the problem 

-Art =f(~, u) on R. 

u20. LlfO on i-2. (1) 

u=o onaR 

where R C Rv is a bounded domain with smooth boundary and f(_r, u): S2 x [0, =) + R. 
We make the following assumptions: 

for a.e. x E R the function u++~(x, u) is continuous on 

[0, x) and the function 11 ~f(x, U)/U is decreasing on (0, Z) 
(2) 

for each 14 2 0 the functionx ++f(.~, u) belongs to L”(Q); (3) 

there is a constant C > 0 such that 

f(_r, U) S C(u + 1) for a.e. x E R. V’rt z 0. 
(4) 

1, 

Set 

aa(x) = pp, 4/L, 

a,(x) = jif”lf(,r, U)/U 

so that --3c < a,,(x) s +r and -= s a,(x) < --3c. By a solution of (1) we mean a function 
u E HA(Q) n L”(Q) satisfying (1). It foilows from (Z), (3), (3) that f(x, u) E L=(Q); indeed 
we have 

-If(x, llL(lI~)l sf(x, 4x)) s C(lLO)i + 1). 

Consequently a solution of (1) belongs to I@-J’(Q) for every p < =. 

Our main result is the following: 

THEOREM 1. There is at most one solution of (1). Moreover. a solution of (1) exists if and only 
if 

A,(-A - a&)) < 0 (5) 
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and 

i.,(-A - aL(x)) > 0. (6) 

Here i.,( -A - a(x)) denotes the first eigenvalue of -A - n(x) with zero Dirichlet condition. 
Since a(x) may take the values +x the precise meaning of (5) and (6) will be espiained in 
Section 3. In the special case vvheref(x. 10 = f(u) is independent ofx. then (j)-(6) is equivalent 

to 

n, < i.i(-A) <a,,. 

Theorem 1 is closely related to a number of earlier results. W’e refer in particular to 
Krasnoselskii [ 12. theorems 7.14. 7.131, Keller and Cohen [ 111, Cohen and Laetsch [6], Keller 
[lo], Simpson and Cohen [lil], Laetsch (131, Amann [1,3]. Hess [9], DeFigueiredo [7]. 
Berestycki [j], and Smaller and Wasserman [lj]. 

The main novelties in our approach are the following: 
(a) Our proof of uniqueness involves a simple “energy” device which is reminiscent of the 

device used in the theory of monotone operators-in contrast with all the previous proofs 
based on a comparison argument and on the maximum principle. 

(b) Our proof of existence relies on a minimization technique vvhile the earlier works used 
most often a sub-super-solution method. In addition. we point out that the functional to be 

minimized, nameI> 

is conuex with respect to the variable p = ~4’. This fact is based on an observation of Benguria 
[3] (see also [3]). 

(c) In most earlier works it has not been noticed-or explicitly stated-that. under assump- 
tions (Z)-(4), there is indeed a simple necessary and sufficient condition for the existence of a 
solution of (1). 

Our paper is organized as follows: 1. Introduction; 2. Uniqueness; 3. Condition (j)-(6) is 

necessary; 1. Condition (j)-(6) is sufficient. 

2. UNIQUEKESS 

Here we use only assumptions (2) and (3). We start with the following lemma. 

LEMMA 1. Assume (2). (3) and let ~1 be a solution of (1). Then we have 

11 > 0 on R 

and 
a11 

so 
0naR 

(n denotes the outward normal direction). 

(7) 

(8) 

Proof. Since u s ]juI], it follows that 
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and therefore 

f(x, u) 2 -Mu on R 

for some constant M 3 0. Hence u satisfies 

-Au+Mu>O on R 

and the conclusion follows from the strong maximum principle (see, e.g. Gilbarg and Trudinger 

PI). 

Proof of uniqueness. Suppose ui and 11~ are two solutions of (1). We write 

Au, I Auz f(x, uJ f(x, u,) -- =_-- , 
Ul U2 Ul U2 

(9) 

multiply (9) through by u: - u$ and integrate over Q. Note that u$/u, and u:/uZ belong to 
Hi and 

4 V- 
( ) 

4 

u1 
=2%7uz--vu,, u: 4 

Ul 4 

v - 
( > u2 

=2u’vu, 
U2 

- - vuz. 
4 

(We use here the fact that ui/u2 and u2/u1 belong to L’, which is a consequence of lemma 1.) 
After some rearrangements we obtain the identity 

ii 

Au1 -- 
Ul 

+~)(u:-u~)=~/vu,-~vu2~2+jvu2-~vu,~2 20. (10) 

We deduce from (9) and (10) that 

f(x, ul) f(x, u,) I( --A 
u1 u2 1 

(u: - u;> a 0 

and we conclude (using assumption (2)) that u1 = CL?. 

Remark 1. If instead of (2) we just assume that the function u c* f(x, U)/U is nonincreasing 
(for a.e. x E Q), uniqueness may fail. However, we obtain 

Vu, vu, -=- and f(x, _ f(X? uz) 
9 

Ul u2 Ul U2 

which implies in particular that u1/u2 is a constant. In many cases we can still conclude that 
ui = ur. 

3. CONDITION (5)-(6) IS NECESSARY 

First we observe that 

a,(x) <f(x, 1) and U&K) 3 f(x, 1) for a.e. x E R 

and hence there is a constant C 3 0 such that 

a,(x) s C and a,,(x) 2 -C for a.e. x E Q. 
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The precise meaning of A,( -A - a(x)) is 

&(-A -a(x)) = 

Note that Jl,+,+Ol a@’ makes sense if a(x) is any measurable function such that either u(x) G C 
or u(x) 2 -C a.e. on 52. In the first case A,(-A - u(x)) E (-z, +x] and in the second case 
A1(-A - u(x)) E [-=, +=). 

Proof of (5). By definition of Ai(-A - u,(x)), and since u > 0 on Q, we have 

On the other hand we have 

j/v+ = jf(x,u)u < jUo(X)KI 

and (5) follows. 

Proof of (6). Set 

and 
,U = &(-A - ci(.r)). 

Let T+V denote the corresponding eigenfunction, that is, 

-A~/J-~$J=/L~J 

1 

on R 

Y’O on R 

?+J=o on dS2. 

Multiplying (1) through by v and integrating on R we find 

On the other hand we have f (x, u) > H(x)u and thus we obtain ,U J u v > 0; hence rc > 0. Finally 
we claim that 

hl(-A - a=) 2 U 

(since u,(x) < i(x)) and the conclusion follows. 

1. EXISTENCE 

We shall establish an existence result siightly stronger than announced in theorem 1. Instead 
of (2) we just assume that 

for a.e. x E R the function u c*f(x, u) is continuous on [O. x). (11) 
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However, we also assume that 

for each 6 > 0 there is a constant C6 2 0 such thatf(x, U) 3 -Cbu 

vu E [O, 61, a.e. x E Q. 

(Note that (12) is a weaker assumption that (2) + (3).) 
Set 

59 

(12) 

Q(X) = lim inf’- 
UlO l4 

a,(x) = lim supfO. 
UT% U 

Under assumptions (12) and (4) there is a constant C such that so(x) 3 -C and a,(x) s C. 

THEOREM 2. Assume that (3), (4), (ll), (12), (5) and (6) hold. Then there is a solution of (1). 

Proof. Consider the functional 

E(u)=?j!Vul’-IF(x,u), L&H&!) 

where F(x, U) = j-5 f(x, t) dt and f(x, u) is extended to be f(x, 0) for u G 0. Note that E(u) E 
(-=, +x] is well-defined since F(x, u) G C(1u2 + ]ul) Vu E R. We claim that: 

E is coercive on HA, that is, lim 
IIUlIH;-x 

E(u) = =; 

E is 1.s.c. for the weak Hb topolog; 

there is some @ E HA such that E(Q) < 0. 

Proof of (13). Assume, by contradiction, that there is some sequence 

IIu,, llHb ---* = and E(u,) G C. 

We have 

and consequently we obtain 

VU” 12 G c (U5, + 1). 

Set 

ttl = II%112 and II,, = u,/t,. 

It follows from (17) that 

fn’*, IL 112 = 1 and llu, IHA 6 C. 

(13) 

(14) 

(15) 

(u,) in Hi such that 

(16) 

(17) 
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We may therefore assume that 

“!I - v weakly in Hb, v, ---, v strongly in L2 and a.e. with ]]v]Iz = 1. 

We claim that 

Indeed we write 

(18) 

We estimate the second integral by 

I 
F(X, t,v,f ) s c 

I 
[tf&Jjy + l] 

[040] [u401 

and we deduce that 

i 

F(x, r,vn’) 
t2 

s o(1) asn+= 
[u401 n 

since v, --f v in L2. 
We estimate the third integral by 

I F(x,t,v,)~C tnl”nI 
[unr0] 

I 
and thus we obtain 

i 

% t, “!I) 
t2 

S o(1) asn-,P. 
lUn401 n 

We now turn to the first integral. We note that 

F(x, u) 
lim sup - 

l2 
C la,(x) for a.e. x E S-2 

u-i +* 

and therefore 

F(x, tn”,C(X>) 
lim sup 

t2 
S la,(x)v’(x) a.e. on [v > 01. 

n-+x n 

(20) 

(21) 

(22) 

On the other hand we have 

F(x, tnv,f> 
t; 

SC 
[ 
(v;y +; 

n 1 
and since v, + v in L2 we may find a fixed function h E L’ such that (for some subsequence) 

F(x, t,“,C) c: h 
t2 

a.e. on 52, Vn. (23) 
n 
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From (22), (23) and Fatou’s lemma we obtain 

lim sup 
qx, fnUZ) 

s1 a,v’. (24) “-.X I 
IO’01 

t* n I 
[V’Ol 

Combining (19), (20), (21) and (24) we see that (18) holds. Passing to the limit in (16) we find 
(using (18)) 

t_/[Vul* <$I a,u*. (25) 
IU’OI 

Finally we have (by definition of LY) 

1 IVu+I* - I,U,ol a=u’ 2 all~+lli (26) 

where a = A,(- A - a=(x)) > 0. 
Combining (25) and (26) we deduce that u+ = 0 and going back to (25) we obtain u = O- 

a contradiction since \IIJ[~~ = 1. 

Proof of (14). Suppose u, - u weakly in Hb. Since F(x, u,) s C(K: + 1) we may apply 
Fatou’s lemma and conclude that 

Proof of (15). We fix any Cp E Hi satisfying 

Jh12 - (Q+oI a0@’ <O 

(such a @ exists by assumption (5)). 
We may always assume that @ > 0 and that @ E L” (otherwise we replace $J by I@,( and 

truncate @). We note that 

,im inf my u) 
ULO 

uz 3 ba0b) 

and thus 

lim inf ‘(” “(‘)) > lao(x)#*(x) 
El0 &* - 

a.e. on [$ f 01. 

On the other hand we deduce from (12) that 

We may therefore apply Fatou’s lemma and conclude that 
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F(x, E@) , r lim inf - -2 
E. II I E? I 

a,$. 
[PF’)l 

Hence we obtain 

for E > 0 small enough. 

Proof of theorem 2 concluded. Using (13): (14) and (15) we see that uFib E(u) is achieved 

by some u + 0. We may always assume that u > titherwise we replace u by u- and use the 
fact that F(x, u) G F(x, u+) (which holds since F(x, u) = f(x, 0)~ s 0 for u G 0). If we knew in 
addition that u E L” we would easily conclude that u is a solution of (1). We claim that indeed 
we may also assume that 

u E L”. (27) 

For this purpose we introduce a truncated problem. We set, for each integer k > 0 

f k(x, u) = MaxCf(x, u), -ku} ifua0 

fk(x, u) =fk(x, 0) =f(x, 0) ifus 

and 

fk(x, u> 
at(x) = lim inf ~ 

fk(x, u> 
UiO u ' 

a!(x) = li;tsup ~ 
L u . 

Assumptions (3), (4), (11) and (12) hold for fk(x, u). Assumption (5) holds for ak since 

&(-A - a;(x)) s&(-A - a,(x)) < 0 

because f s f k and thus a0 < ~“0. Moreover, assumption (6) holds for uk provided k is large 
enough. Indeed, it is easy to check that Ai(-A - at(x)) t A,(-A - a,(x)> since ak, 1 a, as 
k f x. 

Set 

E/e(U) =(/~vU/2 +'(X,U), UEf& 

It follows from the previous argument that Inf Ek(u) is achieved by some uk. %fOreOVer, uk 
satisfies l&Hi 

-AU, = fk(X, uk) on Q 

uk 2 0, uk f0 on Q 

uk = 0 on aQ 

(note that Ek is of class C’ since Ifk(x, u)l G Ck(lu[ + 1)). 
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A standard bootstrap argument shows that uk E L’. 
Set 

U = Min{u, uk}. 

We claim that 

E(o) c E(u), 

and this will conclude the proof of (27). 

Indeed, we have 

(28) 

(29) 

In (29) we choose 4 = Max{u, z+} and we find 

1 ,- IV&I - ,- Fk(x, &) s 1 ,- /Vu]’ - ,- Fk(x, u). (30) 
[Uk<U] [uk<U] [Uk<U] [Uk<U] 

On the other hand we have 

E(u) - E(u) = 1 {_tlV&j’ - &IVu]’ - F(x, uk) + F(x, u)} 
[Uk<u] 

and using (30) we obtain 

Fk(& uk) - Fk(X, u) - F(x, l(k) + F(x, u) = 
I 

’ [f(x, t) -fk(x, r)] dt < 0 
Uk 

on the set [& < u]. Thus (28) is proved. 

Remark 2. We assume again that (2) holds. Then the functional E is convex with respect to 
the variable p = u*. More precisely, the functional p H E(v/p) defined on the convex set 

K={PE L’;pbOa.e.andg/p~Hb] 

is conoex. Indeed, it is known (and easy to prove) that the functional p ++ JjV\/p]’ is convex 
(see [3] and also [4]) while the function p ++ -F(x, d/p) is convex since its derivative 

is increasing. 
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