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Introduction 

Let X be a real Banach space and let X *  be its dual. The value of x *  E X *  
at x E X  will be denoted by either ( x * ,  x )  or ( x ,  x * ) .  A subset of X x X* is 
called monotone if for each pair [xi, $1 E A,  i = 1, 2, we have 

(XT - x i  , X I  - x 2 )  2 0 . 

A monotone set is said to be maximal monotone if it is not properly contained in 
any other monotone set. Monotone sets are usually regarded as (graphs of) 
multivalued monotone mappings from X to X*.  Accordingly we shall use stand- 
ard functional notation even when dealing with sets. Let A be a subset of 
X x X'* .  We define 

A-l = {Ly*, .I: [ x ,y* ]  E A } ,  Ax = {z*: [x ,  z*] E A ) ,  

D(A)  = { x : A x  # 0), R ( A )  = u A x .  
xcD(Af 

If u is real and B is a subset of X x X *  we also define 

U A  = { [ x ,  my*]: [x,y*] E A }  
and 

A + B = { [x,y*  + z * ] :  [x ,y* ]  E A and [ x ,  z*] E B )  . 
If C is a subset of X or X* we define 
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Let A and B be monotone sets in X x X*.  A + B is clearly monotone. 
However, if A and B are maximal monotone, then A + B is not necessarily 
maximal monotone. A + B may even be void; this happens when D ( A )  n D(B)  
= 121. The main problem in the perturbation theory of maximal mono- 
tone sets is that of determining useful conditions under which the sum of two 
(or more) maximal monotone sets (or just monotone sets) is maximal monotone. 
Results in this direction have been established by Lescarret [9], Browder [4] 
and Rockafellar [15]. A common feature of most of these results is the assump- 
tion that at  least one of the maximal monotone sets A or B has a domain with 
non-empty interior. In  many applications however (see e.g. the examples in 
Section 3) ,  the interior of the domains of the monotone sets, or operators, in- 
volved is void and the previous results cannot be applied directly. 

The purpose of this paper is to obtain useful criteria for the case in which 
neither D ( A )  nor D ( B )  has a non-void interior. In  Section 1 we present some 
preliminaries. We start with a renorming theorem for reflexive Banach spaces 
and continue with some convergence statements for monotone sets in Banach 
spaces. Section 2 contains the main results. I t  begins with a theorem, Theorem 
2.1, which is the main tool used in proving all subsequent assertions. Theorem 
2.1 is also used to obtain a simple proof of the main theorem of Rockafellar 
[Pi]. In  Section 3 we give some examples of how the preceding results may 
be used in the study of certain nonlinear partial differential equations. 

1. Monotone Sets in a Reflexive Banach Space 

Let X be a real reflexive Banach space. I t  is known (see E. Asplund [l]) 
that if X is reflexive then there is an equivalent norm on X such that X is 
strictly convex under this norm and X * is strictly convex under the dual norm. 
For our work we shall need a slightly stronger result: 

THEOREM 1.1. Let X be a refixive Banach space with norm (1 11 . For every a > 1 
there exists an equivalent norm 11 \ l a  on X such that 

(i) I( / l a  is a strictly convex norm and its dual norm / I  \I,* is  also strictly convex, 

(ii) II, s I1 I1 5 4 lla and a-lll I t  5 I1 ll* 5 all IP - 
Proof: The proof of Theorem 1.1 follows, with minor changes, the argu- 

ments of E. Asplund in [l] .  By a theorem of J. Lindenstrauss [lo], there exists 
an equivalent norm 11 j j X  on X (respectively, 11 \Ix, on X * )  which is strictly 
convex. (Note that I( / I x  and 11 I / X .  are not necessarily dual norms). 

Let E > 0 and define 

y EX*. 
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Choose E small enough so that Yo(.) 5 +az I / X ~ / ~  and g z ( y )  5 &a2 where 
go is the conjugate function of go* . Clearly there exists a C > 0 such that g o  5 
fo (1 + C ) g o  . We consider the iteration procedure of [ 11 : 

and obtain h ( x )  = lim f,(x) = limg,(x). Since g , ( x )  5 h ( x )  5 fo(x), we have 

(1/2a2) 11 x / I 2  5 h ( x )  5 &a2\IxJ12. Let 11 / l a  
and 11 /I,* are strictly convex norms (since f o  and g; are strictly convex) and 
they clearly satisfy (ii) . 

We shall henceforth assume that X is a real reflexive Banach space. The 
norms I( / /  in X and /I I/* in X* will always be dual norms and if there is no 
danger of confusion we shall omit the star from the norm I/ I \ *  in X* and de- 
note both the norm in X and its dual norm in X* by I( (1. 

l I n  = 2/2h(x). Bya theorem in [l], 1 1  

Let F be the duality map of X ,  i.e., the subset of X x X *  defined by 

F = { [ x ,  x * ]  : x  E X ,  x *  EX* and ( x ,  x * )  = j/x2 11 = ( / x *  IlZ} I 

If X and X *  are strictly convex, then F is a single-valued function defined 
on all of X .  We shall write x *  = F(x) if Ex, x * ]  E F. In  this case, it is easy 
to check that F is one-to-one and onto. Moreover, the map F is strictly mono- 
tone (i.e ., ( F ( x )  - F ( y ) ,  x -y) > 0 for x # y ) ,  hemicontinuous (i.e ., the 
mapping t t+ ( F ( x  + ty), 2) is continuous in t for x ,  y ,  z E X ) ,  maps bounded 
sets into bounded sets and is coercive (i.e., ( F ( x ) ,  x ) / l \ x l \  + co as 1 /x / /  ---f 00) .  

The duality map F clearly depends on the norm in X .  If 1 )  / l a  is an equi- 
valent norm on X, then we denote the duality map corresponding to 11 11, 

Let X and X* be strictly convex and let A be a monotone set in X x X * ;  
then it is well known (see e.g. Browder [4]) that A is maximal monotone if and 
only if R(F + A )  = X*.  The following lemma is related to this result and will 
be needed later. 

by F a .  

LEMMA 1. I .  Let { 11 ila} be a family  strictly conuex equivalent norms on X such 
that their dual norms are also strictly convex. Let Fa be the duality map corresponding to 
the norm I ]  11, . Let A be a monotone set in X x X*.  rf f o r  euery f * EX* and u E X 
there exists an a f o r  which the equation 

has a solution u E X ,  then A is maximal monotone. 
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Proof: Let u EX, f * E X* be such that 

(u *  - f *, u - u )  2 0 for every [ u ,  a * ]  E A . 

Solving equation ( 1 . 1 )  yields (F,(v) - F,(u), u - u )  5 0. But F, is strictly 
monotone, and therefore u = u. Using ( 1 . 1 )  again, we obtain u* =f*, i.e., 
[ u , f * ]  E A and A is maximal monotone. 

Our next lemma is analogous to Lemma 1.2 in Brezis-Stampacchia [2]. 

LEMMA 1.2. Let B be a mtzximal monotone set in X x X * .  If [un , u:] E B, 
u ,  - u (weak convergence is denoted by -), v: - v* and either 

(1.2) 

or 

then [ u ,  u * ]  E B and (un , u:) --t (u, v*). 

Proof: We prove the lemma with the condition (1.2). Fron 
icity of B it follows that 

lim (un - u, , u: - u:) = 0 .  
n.m-tm 

(1.4) 

Let { n i }  be a subsequence of { n }  such that ( u n i ,  v:J + L. From 

= 2 L  - 2(u ,  v*) . 

the monoton- 

1.4) we obtain 

Hence L = (u, u * )  and therefore (since L is unique) (un, v:) + (u, u * ) .  This 
implies that ( x  - u,y* - u * )  2 0 for every [x,y*] E B, and [u,  u * ]  E B now 
follows from the maximality of B. The proof of the lemma with the condition 
(1.3) is similar. 

Let X and X* be reflexive and strictly convex and let B be a maximal 
monotone set in X x X * .  As a consequence of a theorem of Browder [4] the 
equations 

(1.5) F(x,  - .) + Ax; = 0 ,  [ X A  , 4 1  E B 9 
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have a unique solution [x,  , .,*I for every x E X and 1 > 0. We define 

for every x E X .  We collect some elementary properties of J ,  and B, in the 
following lemma. 

LEMMA 1.3. 
(a) B, is a (single-valued) monotone mapping of all of X into X*.  
(b)  B, and J ,  map bounded sets into bounded sets. 
(c) B, (respectively J,) is continuous from X with the strong topology to X *  (respec- 

(d) For every x E D ( B ) ,  llB,xll 5 lBxl and, j > r  every x E conv (D(B) ) ,  lim Jax 

Let X and X *  be strictly convex. 

tively X )  with the weak topology. 

,-a = x .  

(e) If ;In ---f 0, x ,  x, Bl,xn -y* and 
- 
lim (xn - x,  , B,,xn - B,,xm) 5 0 ,  

n,m+m 

then [ x , y * ]  E B and 

Proof: (a) B, is clearly defined on all of X and is single-valued. Moreover, 

(B,u - BAv, u - U )  = ( B ~ U  - BAv, J,u - J,v) 

+ (B,u - B,v, (U - J,u) - ( U  - JAv)) 

= (BLu - B ~ v ,  JAu - J ~ v )  

1 + j (F(J,u - U )  - F(J,u - u), (J,u - U) - (J,v - U) 

2 0,  

and hence B, is monotone. 
(b) Let [u, v*] E B. Multiplying (1.5) by J,x - u yields 

(F(JAx - x ) ,  J ~ x  - U) A(v*,  u - J ~ x )  
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which implies that J ,  maps bounded sets into bounded sets and since F maps 
bounded sets into bounded sets also B,  has this property. 

Let u, = J A x n ,  vz = BI,xn ; then u,  and v z  are 
bounded (by (b)).  We have F ( u ,  - x n )  + Auz = 0, and therefore 

(c) Let x ,  + x o  in X. 

Since the right-hand side tends to zero as n,m --f 00 and the two terrns on the 
left-hand side are non-negative we have 

and 

lim (F(u ,  - xn) - F ( u ,  - xm) ,  (un  - x,) - (urn - x,)) = 0 
n,m-m 

Let {nk} be a subsequence of {n} such that unk 2 u, v:,, u* and F(unk - x n k )  
-?I*. Then [u, u * ]  E B  and F ( u  - x o )  + Av* = 0, by Lemma 1.2. 
Consequently, u = Jauo and u* = R,xo and therefore (since the limits are 
unique) J,x, - J,xo and BLx, - B,xo and the proof of (c) is complete. 

(d) Let [x ,  x * ]  E B and F(x,  - x )  + Ax,* = 0;  then 

and thus 

Since x *  E Bx is arbitrary, (IB,xI( 5 IBxl. Let [v, v*] E B, then 

(1.8) = ( F ( x ,  - x ) ,  X ,  - U) + ( F ( x ,  - x ) ,  u - X )  

6 A(u*,  v - x,) + ( F ( x ,  - x ) ,  v - X )  . 
It follows from (1.8) that \lx,ll is bounded as A+ 0, therefore IIF(x, - is 
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bounded. 
implies 

Let A, ---f 0 be a sequence such that F(x, ,  - x )  - q ;  then (1.8) 

- 
lim IIx,, - xlj2 (q ,  u - x )  for every u E D(B)  , 
n-w 

(1.9) 

and therefore also for every u E conv ( D ( B ) ) .  If x E conv ( D ( B ) ) ,  (1.9) yields 
x,, + x which implies that x ,  + x .  Moreover, a simple argument shows that 
the convergence is uniform on compact subset of conv D ( B )  . 

(e) Since [JAnxn, Bn,xn] E B, part (e) follows directly from Lemma 1.2 
applied to u, = Jn,xn and uX = B,,x,, noting that IIB,,x,II 5 M implies that 
IIu, - x,II = JIJA,x, - x,Ij -+ 0 as  n + cg and that 

lim ( x n  - x,  , B,,xn - B,,xm) = lim (un - u, , B,,x,, - B,,.,) = 0 . 
n,m-m n,m+cc 

The proof of Lemma 1.3 is complete. 

Remarks. I .  If, in part (c) of Lemma 1.3, X has the property that x, x 
together with IIx,JI -+ llxll imply x, + x ,  then J ,  is strongly continuous from X 
to X .  

2. Lemma 1.3 part (d) clearly implies that if X is any reflexive Banach space 
and B is maximal monotone in X x X*,  then D(B)  is convex. Moreover, if 
X and X *  are strictly convex and X satisfies the condition of Remark 1, then 
D(B)  is virtually convex in the sense of Rockafellar [16]. Thus Lemma 1.3 part 
(d) provides us with a simple proof of the results of [16]. 

- 

3. Rockafellar [16] considers for every y* E X* the equation 

IF(x,)  + 2: = y * , [xn 9 .:I E B Y 

and then denotes: He raises the question whether P ,  is con- 
tinuous in some natural topologies. I t  is easy to see that P ,  is the operator J ,  : 
X *  -+ X* which corresponds to B-l (maximal monotone in X *  x X ) .  There- 
fore by part (c), P, is continuous from X *  with the strong topology to X* with 
the weak topology. In addition, if X *  has the property that y;-y,  IIyn)I 
-+ 11 yII imply y ,  -+y*, then P, is strongly continuous from X *  to X*. 

x t  = P,(y*).  

4. Let X and X *  be strictly convex and let A and B be maximal monotone 
sets in X x X*.  According to Browder [4] (Theorem 2),  A + B, is maximal 
monotone for every 1 > 0. 

Our last lemma is a generalization of Lemma 2.4 of Crandall-Pazy [6]. 

LEMMA 1.4. Let X and X *  be reJexive and strictly convex. Let {x , }  c X and let 
(r , )  be a monotonic sequence of positive real numbers. Further, let 

( ~ n  - xm , rnF(xn) - rmF(xm)) S 0 * 
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Then : 

over, lim ~ ~ x , ~ ~  = \ lx l l .  

lim x, exists and j/x = lim &x, 1 1 .  

(i) If r,  ---f co, then ~ ~ x , ~ ~  is non-increasing and x = w-lim x, exists. More- 

(ii) If r ,  ---f 0,  then IIxJ i s  non-decreasing. If { !1xnlI} is bounded, x = W- 

Proof: We have 

The last two terms are non-negative; hence, 

and the monotonicity of { ~ l x n ~ l }  follows. Let us prove ( i ) .  Divide (1.10) by 
r ,  + rm to find 

Let llxnll --t L and assume F(x$ -, q. 
(1.11). Since r , +  +CO, we obtain 

Fix m and let n -+ co through {n,} in 

Letting m + 03, we see that 

Since llqll 5 L, llxmll 5 L ;  this implies xm-F- l (q )  and llvll = L. The proof 
of (ii) is similar. 

We finish this section with some remarks on a special kind of maximal mono- 
tone set in X x X*. Let f be a convex lower semi-continuous function from X 
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into R u {+ co}. We assume that f is proper (i.e., not identically +a). We 
recall that the subdifferential 

af ( u )  = { w * :  w* EX* and f ( u )  & f ( u )  + ( w * ,  u - u)  for every u E X )  

is a maximal monotone set (see e.g. [14]). 
Note that if K is a non-void closed convex set in X and yk is the indicator 

function of K (i.e., yR(x)  = 0 for x E K and yK(x)  = +CO for x 6 K ) ,  then 
ys is a proper, convex and lower semi-continuous function. I t  follows that 
ayK is a maximal monotone set in X x X*.  It is easy to verify that the domain 
of ayIc is K and that w* E ay,(u) if and only if (w* ,  u - u) 2 0 for every 
u E K.  

2. Perturbation Theorems 

We begin this section with a theorem which turns out to be very useful in 
proving perturbation results. Let X be strictly convex with a strictly convex 
dual X*.  Let A and B be maximal monotone sets in X x X*.  According to 
the discussion in Section 1, A + B, is maximal monotone in X x X *  and it 
follows that the conditions 

determine a unique x A  E X for every f * E X*.  

THEOREM 2.1. L t t  X be strict& conuex with a strictly conuex dual X*. Let A and 
B be maximal monotone sets in X x X*,  and let xA be the solution of equation (2.1). 
Then f * E R(F + A + B)  i fand  only if \\BAx,JI is bounded as A tends to zero. 

Proof Let f * E R(F + A + B).  Then there exists an x E X  such that 

Let x ,  be the solution of equation (2.1); then 

since A is monotone. Using 
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we obtain 

since B is monotone and B,x, E BJ,x. Thus, IIBnxlJj2 2 (x,* , F-l(B,x,)) or 
I( B,x,I( s llx; ( 1 ,  and the condition is necessary. 

To prove that the condition is sufficient we show that the equation (2.2) has 
a solution if ~lBixAll is bounded. Let [xo  , x,*] E A and multiply equation (2.1) 
by x ,  - x o  . After rearrangement we obtain 

which implies that jlx,ll 5 C,Z + 2C2, i.e., jllc,/( is bounded. By our assump- 
tion, llBixlII C and therefore in equation (2.1) we have ~ 1 ~ ~ ~ 1  s C. We choose 
a sequence 2% + 0 such that xi, - x o  , xTn - x,* , BI,xAn - x i  and F(x,,) - z*. Using equation (2.1) for 1, and A m ,  we obtain 

since F + A is monotone, the last equation implies 

and hence, by Lemma 1.3(e), [xo  , x,*] E B and 

Consequently, 

and, since A is monotone, 
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Therefore, by Lemma 1.2, z* = F(x,) and 

lim (x,*, - x,, * , x,, - xn,) = O , 
n,rn-+ m 

which again by Lemma 1.2 implies that [x, , x:] E A .  Passing to the limit 
through the sequence {A,} in equation (2.1), we obtain F(x,)  + x r  + x: = f *, 
[x, , 2 3  E A,  [ x o  , x:] E B, i.e., f * E R(F  + A + B). 

Remarks. 1 .  I f f  * E R(F + A + B ) ,  then there exist a unique x E X  and an 
x *  E ( A  + B)x such that f * = F ( x )  + x*. Let x*  = x: + x: , where x*, € A x  
and x,* E Bx. This decomposition of x* is in general not unique. We can choose 
any x,* in the non-void convex set Hx = Bx n (f - F(x)  - Ax) and then take 
the corresponding x: . If, however, the solution of (2.2) is obtained as in the 
proof of Theorem 2.1, i.e., by a sequence of solutions of (2.1) for which x ,  , 
F(x,),  x; and B,x, converge weakly, then x: and x: are uniquely determined, 
x: is the element of minimum norm in Hx and xr = f * - F(x)  - x: . This 
is a direct consequence of the first part of the proof of Theorem 2.1 in which 
we took for x: any element in Hx and obtained llB,x,II 5 Ilx,*Il. 

2. In the sufficient part of Theorem 2.1, we obtained a solution of (2.2) by 
considering a sequence of solutions of (2.1) with some special properties. Using 
Remark 1, we shall show that, i f f  * E R(F  + A + B )  and 

then x, - x, , F(x,) - F ( x O ) ,  B,x, - 2: and x: - x: , where x ,  is the unique 
solution of equation (2.2), i: is the element of minimum norm in Hx, and xT = 
f * - F(x,) - 2: . Moreover, if X and X *  are uniformly convex, then the 
above weak limits are strong limits. 

Proof: Any sequence A, ---f 0 has a subsequence 1; such that x,,,, F(x?"), 
xf,, and BAInxAfn converge weakly. As in the proof of Theorem 2.1, we then 
have xAfn - xo , F(xArn) - F(x, ) ,  BAPnxLfn - 2: (by Remark 1) and xTPn - x: = 
f * - F(x,)  - i,* . Since the limits are uniquely determined and A, was an 

B,x, - 2: and x: - x: = f * - F(x,) - i: . 

[ x ,  , i3  E B ,  we have 

arbitrary sequence converging to zero, this implies x, - x ,  , W,) - FkO) , 

Assume now that X and X *  are uniformly convex. Since B,x, - 2: and 

- 
112.: II 5 lim llBnx,Il 2 lim IlBl~lll 5 II.:II ; 

therefore, lim llBlx,II = 11i:II and the uniform convexity of X* implies Bn.CA --t 
i: . Subtracting (2.1) from 

F(x,) + x ;  + 2; = f * 
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and multiplying by xi. - x,, yields, after passing to the limit as 1 -P 0, 

- 
lim (F(x,)  - F(xO) ,  x ,  - x,,) 0 , 

which implies llx,ll -+ llx,,ll and we conclude that xi -+ x,, and F(x,) + F ( x o ) .  
The proof is complete. 

3. A direct proof of Remark 2 can be obtained using Lemma 1.4. 
Using Theorem 2.1 we obtain an alternative proof of the following theorem 

of Rockafellar [ 151. 

THEOREM 2.2. Let X be a rejexive Banach space. Let A and B be maximal mono- 
tone in X x X*.  If int(D(A)) n D ( 3 )  # @ ,  then A + B is maximal monotone in 
x x x*. 

Proof: We choose in X and X *  any strictly convex equivalent dual norms 
(see Theorem 1.1). Clearly, we may assume without loss of generality that 
0 E int(D(A)) n D(B)  and 0 E AO, 0 E BO. This can be achieved by shifting 
D ( A ) ,  D(B) and R ( A ) ,  R(B).  Let f* be any element of X *  and consider 
the equation 

Since A and B are monotone, 0 E A0 and 0 E BO, we see by multiplying (2.3) 
by xi that 

and 

Moreover, since 0 E int(D(A)), A is locally bounded at  0 (see e.g. Kockafellar 
[15]). Hence there exist constants a > 0 and K > 0 such that if llxll < a, 
then x E D ( A )  and if x *  E U Ax ,  then \ Ix* l l  5 K .  

ll.+< a 
For 1 > 0, define zi = ;aF-l(x:)/(lx,*l/. Since ~ ~ z J  = +a < a ,  z ,  E 

D ( A ) .  Let [z2 , 2 3  E A .  Then IIz,*ll 5 K and we have 
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This implies that I lx t  11 s C. Using this together with (2.3) and (2.4) we see 
that llBlxlII 2 C and therefore, by Theorem 2.1, f * E R(F + A + B) .  Since 
f * was arbitrary, R(F + A + B )  = X *  and A + B is maximal monotone. 

We now turn to our main result. 

THEOREM 2.3. Let X be a refexive Banach space. Let A and B be maximal mono- 
tone sets in X x X *  such that 

(4  W )  = W), 
(ii) IBx) s k(ll.11) lAxl + C(llxll), where k(r )  and C(r)  are non-decreasing functions 

Then A + B is maximal monotone in X x X * .  
o f  Y and k(r )  < 1 for every r .  

Proof Without loss of generality we may assume that 0 E B ( A ) ,  0 E A0 
and 0 E BO. This can be achieved by shifting the domains and ranges of A 
and B. 

Let ( 1 1  II,} be the family of equivalent norms on X introduced in Theorem 
1.1. In  view of Lemma 1.1, A + B is maximal monotone if for every f * E X *  
and u E X there exists an a such that 

f * + F,(u) €R(F ,  + A 4  + B) . 

To show that this is indeed the case, consider the equation 

For every f * E X * ,  u E X and any fixed a, this equation has a unique solution 
xl. If llB'$Alla is bounded as A tends to zero, then f * + F,(u) E R(F,  + A + B )  
by Theorem 2.1. To prove the theorem it is therefore sufficient to show that, 
for every f * EX* and u E X ,  there exists an a such that IIB:x,Ila is bounded as 
A tends to zero. Multiplying (2.6) by x A  yields 

since SiO = 0. 
and k(R)az < 1.  Using equation (2.6) again, we obtain 

Let R = 2(1\f*lj + Ilull) and choose a such that 1 < a < 2 
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‘Thus  AX,^ 5 a 2 k ( R )  lAxll + C, which implies that lAxnl is bounded and there- 
fore, by (2.7), lBxlla is bounded. Hence, IIB!xl1la is bounded and the proof is 
complete. 

Remarks. 1. If X and X* are uniformly convex, condition (ii) of ’l’heorem 

(ii)’ For every x E D(Aj there exist a neighborhood V,  of x ,  a k ,  < 1 and a 
2.3 can be replaced by the following local condition: 

constant C, such that 

IByl 5 k,  lAyl + C, for every y E B(A) V,  . 

We do not know whether or not this is true in a general reflexive Banach space. 
2.  In  the case that X is a Hilbert space (and the case of accretive operators 

in Banach space), Theorem 2.3  was first proved by Crandall and Pazy [6]. 
For these cases, Kato [8] observed that condition (ii) of Theorem 2.3 can be 
replaced by the local condition (ii)’. 

COROLLARY 2.1. I,ct X be a rejlexive Banach space. Let A be a maximal set in 
X x X * ,  and let B be a single-valued monotone hemicontinuous operator with convex 
domain D ( B )  in X .  I f  D ( A )  c D ( B )  and 

where k ( r )  and C(r)  are non-decreasing functions and k ( r )  < 1 for every r,  theti A + R 
is maximal monotone in X x X*.  

Proof: Let B be a maximal monotone extension of B. Let K = D ( B ) .  
Clearly, lBul 5 IlBull for every u E D ( A )  and D ( B )  3 D(B)  =I D ( A ) .  There- 
fore, A + B is maximal monotone by Theorem 2.3. We shall prove that, for 
every u E D(R), 

(2.8) Bzc c BZl + ayl<(u) . 

Let u E D ( B )  and f E B U ;  then 

(2.9) (Rv -f, u - u )  5 0 for every u E D ( B )  . 

Let ze, E D ( B )  and define ut = ( 1  - t ) u  + tw ,  0 < t 2 1 .  
place of v in (2.9) yields 

Substituting ut in 

(f- B v , ,  u - W )  2 0 .  

Letting t tend to zero and using the hemicontinuity of B, we obtain 

(.f - B u ,  u - w) >= 0 



NONLINEAR MAXIMAL MONOTONE SETS IN BANACH SPACE 137 

for every w E U ( B )  and therefore also for every w E D(B) = K. Thus, 

and (2.8) is proved. From (2.8) it follows that A + B c A + B + a y K .  But 
A = A + a y K ,  since D ( A )  c K and A is maximal monotone. Therefore, 
A + i? c A + B which implies A + B = A + B and hence A + B is maximal 
monotone. 

3. Applications 

In  this section we give three simple examples in which the previous theory is 
applied to partial differential equations. Our main interest is in the technique 
used to solve the problems rather than in the specific results. We denote by SZ 
a bounded domain in R" with smooth boundary 80, and by H"(Q),  HT(Q)  the 
usual Sobolev spaces. 

EXAMPLE 1. Let @ c R x R be a maximal monotone set in R x R such that 
0 E D(B) .  Let V ( x )  E L p ( Q ) ,  p 2 2, and V ( x )  2 0 ax. in Q. 

THEOREM 3.1. Let p > i n ;  then f o r  every f E L2(Q)  there exists a unique solution 
u E H 2 ( Q )  of the equation 

M o r e  precisely, there exists a g E L2(Q) such that g ( x )  E B ( u ( x ) )  a.e. in Q and the 
equation 

- A u + g + V u = f  in  Q ,  
(3.1)' 

is satisjed. 

u = O  on a Q .  

To prove Theorem 3.1, let X = X *  = L2(Q) and let 11 11 be the L2(R)  
norm. We introduce the following operators : 

f l  = {[u, u ]  : u, u E L2(Q) and u(x)  E B ( u ( x ) )  ax. in Q} . 

Clearly /? is maximal monotone in X x X*.  There is no loss of generality in 
assuming that 0 E f l ( 0 )  and we shall henceforth assume this. 

Let D ( A )  = H 2 ( 0 )  n H t ( Q )  n D(/?) and let Au = -Au + /?(u) for u E 

D ( A ) .  Using Theorem 2.1, we shall show that A is maximal monotone. I t  is 
well known (see e.g.  Nirenberg [13]) that -A with domain Hz(SZ) n H:(R) is 
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maximal monotone in Lz(Q)  x L2(R). Hence the equation 

has a solution u, E H2(Q)  n H;(Q). 
over Q and noting that BA(u,) - u, 2 0 a.e. in Q and that 

Multiplying (3.2) by Bi(u,), integrating 

(since B, = (b), and pi, is a monotone Lipschitz function), we obtain 

Therefore (by Theorem 2. l ) ,  the equation 

f E  (-Au + $(u )  + u )  in Q ,  

u = O  on a Q ,  

has a solution. 
over, for any f E Au we have (see [13]) 

Since f €L2(R) is arbitrary, A is maximal monotone. More- 

and therefore, 

Let D(B)  = { u : u  E L z ( Q )  such that Vu E L 2 ( Q ) } .  Since V 2 0, B is mono- 
tone. I t  is maximal monotone, since the equation 

A > O ,  u + AVu =f, 

has the solution u = f/(1 + AV) which is in L 2 ( R )  for every f e L 2 ( Q ) .  
We now use Theorem 2.3 to show that A + B is maximal monotone. We 

start by showing that D ( A )  c D ( B ) .  For this it is sufficient to show that H2(Q) c 

D(B).  Consider 
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where l/q + 2/p = 1, i.e., q = p / ( p  - 2). Thus, 

(3.5) IlBuIl 2 11 ~ I I L W  /bIIL29(n) * 

But p > i n  implies 1/2q > 3 - 2/n  and, therefore, by Sobolev’s theorem, 
H 2 ( Q )  c L Z g ( Q ) .  Moreover, the embedding is compact. This implies that 
H 2 ( Q )  c D ( B )  and that for every E > 0 there exists a constant C ( E )  such 
that 

Ilul/LZq(*) s E I /Ul IH2((1) + c (8) I14 * 

Using this estimate together with (3.4) and (3.5) we see that 

llB4 5 EC / I  VIIL”(61) IAul + C(&) II VIIL”(R) ll4l 

Choosing E so small that FC / /  VllLp(*) < 1, we obtain the estimate which is needed 
in Theorem 2.3, and hence A + B is maximal monotone. 

To complete the proof note that A + B is also coercive and, therefore, 
R(A + B)  = X *  = L2(Q) .  

Theorem 3.1, together with the results of Crandall and Pazy [6], yields the 
following corollary. 

COROLLARY 3.1. 

Then the equation 

au 
at  

O E - .  

has a unique solution 

Let /I and V be the same as in  Theorem 3.1 and let 

u,, E H Z ( ~ )  n H;(Q) n ~ ( j ) .  

. Au + j ( u )  + Vu in Q x (0, +a), 

u ( x ,  t )  = 0 on x (0, + co) , 
u ( x ,  0 )  = u o ( x )  in Q ,  

U ( X ,  t )  EC(O, + CO; L 2 ( Q ) )  such that 

u ( x ,  t )  EH~(Q)  n H;(G) n D(& 

for euery j x e d  t 2 0 and au/at E L“(0, + co; L*(G)) .  

Remark. 

EXAMPLE 2 .  

It  can be shown that &/at  E L2(0, + co; H:(Q)) .  

Let y1 , yz  E H 2 ( Q )  satisfy y1 5 yz in 

K = ( u  : u €La(Q), y1 2 u 5 yz  

and yl 5 0 5 yz  on 
an. The set 

a.e. on Q> 
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is clearly a closed convex subset of L*(R). 
L2(R). For every u in L2(R) we have 

Let P ,  be the projection on K in 

.? 

(3 .7 )  P,u = u + ( y l  - 24)' - (L1 - y 2 ) + ,  

where r+ = max ( r ,  0). 
Let V ( x )  E Lp(R), p 2 2, and V ( x )  >= 0 a.e. in R and consider the following 

problem: Given any f € L 2 ( ! 2 ) ,  find a function u E H2(Q)  n Hi(R) A K such 
that 

S , ( f + A u - V u ) ( u - v ) d x ~ O  for every V E K .  

This elliptic inequality is equivalent to the problem 

(3.9) 
- au + ay,w + ~r, , 

u E H2(R) n H;(R) , 

where y K  is the indicator function of the convex set K .  

THEOREM 3.2. The elliptic inequality (3.8) has a unique solution u €H2(R) n 
Hi(f2) n K f o r  every f E L ~ ( R )  provided that p > i n .  

To prove Theorem 3.2, let X = X* = L2(Q) and let 11 / I  be the L2(Q) norm. 
We introduce the operators: A ,  with domain D ( A )  = H2(R) n H,l(R) n K ,  
defined by A = -Au + ayK(u) and B, multiplication by V ( x ) ,  as in Example 
1. From the results of [2] it follows that A is maximal monotone. Nevertheless, 
we give here a direct proof of this result which seems to be simpler and is based 
on Theorem 2.1. Using Theorem 2.3  we conclude that A + B is maximal 
monotone. Finally we note that A + B is also coercive and, therefore, 
R ( A  + B )  = L2(R). We start with a lemma. 

LEMMA 3.1. Let L be a linear operator, L : H2(R)  + L 2 ( R ) ,  such that 

f o r  every w E H2(f2)  which satisjies w 0 on an. Then 
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Proof We have 

jyu - PKU) dx = Lu[(u - yz)+ - (yl - u ) + ] d x  In 

since II(u - ~ ~ ) + / l ~  + II(yl - ~ ) + 1 1 2  = Ilu - PKu112. 
We now prove that A is maximal monotone. For f given in L 2 ( Q ) ,  consider 

the equation 

It is easy to verify that 

1 
il 

( a  yK)lu = - ( u  - Pliu) for every v E LZ(Q2) . 

Multiplying equation (3.10) by ( a  yK),u, and integrating over Q yields 

Using Lemma 3.1 with L = - A  + I ,  we obtain 

and hence 

By Theorem 2.1 we conclude that f E R(I  + A )  and, since f was arbitrary, 
A is maximal monotone. 

From equations (3.10) and (3.11) we have 
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passing to the limit as 1 + 0 we obtain 

(3.12) 

Let u E B(A) and g E A D ;  then g + u E -Au + u + ayl;(u) and therefore, by 
13.12)) 

II -AU + UII 5 2 llgll + 2 llull + C, 

from which we conclude that 

From this point the proof proceeds exactly as the proof of Example 1. Equation 
(3.13) replaces equation (3.4) and after a simple computation we obtain D ( A )  c 
D(B)  and 

where k < 1. 
Using the results of [6] in conjunction with Theorem 3.2 we obtain 

COROLLARY 3.2. Assume that the conditions o f  Theorem 3.2 are satisjrd. Let 
u,, E H 2 ( Q )  n HA(R) n K.  Then the parabolic inequality 

has a unique solution u E C(0, + 0 0 ;  L2(R)) such that u(x ,  I )  E H 2 ( Q )  n H i ( Q )  n K 
f o r  every t 2 0 and &/at E L“(0, + 0 0 ;  L2(R)).  

Remarks. 

2. Weak solutions of (3.8) and (3.14) could be obtained using the results of 

1 .  It can be shown that & / a t  E LZ(0, T ;  H ; ( Q ) ) .  

Browder [ 5 ] ,  Hartman and Stampacchia [7] and Lions-Stampacchia [ 121. 

EXAMPLE 3. Let V be a reflexive Banach space, #’ be a Hilbert space 
and let 

V C Z C Y * ,  

where the embedding is dense and continuous. Let 
in V and 0 EX.  We denote by ( , ) the scalar product in 
duality Y,  V* .  

be a closed convex set 
and in the 

Let X = LP(0, T ;  V ) ,  p 2 2, and X* = LP’(O, T ;  V * )  with 
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1/p + l/p’ = 1 and let 

K = {u  E X : u ( t )  E .?f a.e. on (0, T ) )  

THEOREM 3.3. Let B ; K n C(0, T ;  2) -+ X *  be a single-valued monotone 
hemicontinuous and coercive operator such that 

with u < 2, 6, and +z  non-decreasing functions. Then for every f E X *  there exists 
a u E K n C(0, T ;  X )  such that u.(0) = 0 (respectively u(0) = u(T) )  which is a 
solution o f  

(3.16) 

for every v E K with dv/dt E X * ,  v(0) = 0 (respectively v(0) = v( T ) ) .  

To prove Theorem 3.3 we show that the operators A and B defined below 
satisfy the conditions of Corollary 2.1. Let A be defined as follows: g E Au if 
and only if u E K ,  g E X *  and 

for every v E K with dv/dt EX*, u ( 0 )  = 0 (respectively v(0) = v( T ) ) .  I t  follows 
from a result of Brezis [3] that A is maximal monotone. Moreover, if u E D(A) ,  
then ~t EC(O, T ;  X ) ,  u ( 0 )  = 0 (respectively u ( 0 )  = u ( T ) )  and 

Using (3.15) we then have, for every u E D ( A ) ,  

(6 can be chosen arbitrarily small since tc < 2). Thus the conditions of Corollary 
2.1 are satisfied and hence A + B is maximal monotone. Finally since 0 E A0 
and B is coercive, A + B is coercive and R ( A  + B)  = X*.  

Remark. Theorem 3.3 includes as a particular case the result of Lions [l 11. 
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