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1. Introduction 

Consider the Cauchy problem 

ut -- du  + u p ----- 0 on RN• (0, oo) (I.1) 

u > 0 on RN• (0, oo) (1.2) 

u(X, O) = c ~(x) on R, N, (1.3) 

where N _--> 1, c > 0 is a constant and ~(x) denotes the Dirac mass at the origin. 
A result of  BREZlS and FRIEDMAN [6] asserts that if 1 < p < (N + 2)/N, 

then for every c > 0 there exists a unique 1 solution uc of (1.1)-(1.3). When 
p >= (N + 2)IN there is no solution of (1.1)-(1.3) and in fact any solution u of  
(1.1) such that u ~  0 on RN• oo) and 

lim f u(x, t) Z(x) dx = 0 VT, ~ Co~ N \ (0}) 
t~,o RN 

must vanish identically. Therefore we deal only with the case p < (N + 2)/N. 
The function uc(x, t) is smooth in RNx [0, oo) except at the point (0, 0). 

Near (0, 0) the singular behaviour of u, is essentially like that of  cE, where E(x, t) 
is the fundamental solution of the heat equation, that is 

1 _lxl__2 ~ 
E(x, t) -- (4~t)N12 e 4t �9 

In particular it can be shown that 

uc <= cE, 

lim f lug(x, t) -- cE(x, t)] d x  : 0 
t,~O I{ N 

1 The solution is unique, even without prescribing any condition at infinity (see 
B R E Z I S  [ 5 ] ) .  
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and, more precisely, as is shown in the Appendix, 

[ uc(x, t) --  cE(x, t)] ~ CFE(x,  t) V x  E R N, t > O, 

for some constants C > 0 and v ---= �89 N{1 4- (2/N) -- p} > 0. 
In this paper we establish that there exists a function W(x, t), which satisfies 

(1.1), (1.2) and 

W is smooth in RN• [0, ~ )  except at (0, 0) (1.4) 

W(x, 0) ---- 0 for all x E R N \ {0}, (1.5) 

and W is more singular that E at (0, 0). 
We look for a function W of the form 

1 AIxlN 
W(x, t) = ~ j  [ t - ~ )  . (1.6) 

It is readily verified that W satisfies (1.1), (1.2), (1.4) and (1.5) if and only if f0/) 
satisfies 

f " 4 -  ~ +�89 4- P _ l f - - f  p : 0 on (0, cx~) (1.7) 

f >  0 and f is smooth on [0, cx~) (1.8) 

2 
f ' (0)  : 0 and lim Bp- l f01)  = 0. (1.9) n~oo 

Our main result is the following: 

Theorem. I f  1 < p < 1 + (2/N), then there is a unique function f satisfying 
(1.7), (1.8) and (1.9). In addition the asymptotic behaviour o f f  as ~1 -+ cx~ is given 
by 

I (7)1 f07) = Ae-l~= 9~ ~  1 - -  (0r - -  N)  (or - -  2) ~ + o 

where o~ = 2/(p --  1) and A is a certain positive constant. 

One sees easily that the singularity of W at (0, 0) is stronger than the singularity 
of E. Note for example that 

E(O, t) = (4m)  -N/2, 

while 
1 

W(O, t) = t p-1 f(0) 

1 / ( p - -  1) > N/2 because p < ( N 4 -  2)/N. Also observe that for any and 
e > 0 there exists a constant K~ > 0 such that 

[[ W(-, t)llLoOCixl>O <= e t as t ~ 0 ,  
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and 

where 

f W(x, t) ax = cpt-% 
It N 

1 N 
Y p - - 1  2 > 0  

and Cp > 0 is a certain constant. 
It follows in particular that 

lim f W(x ,  t)  dx  = t o  
t~,O R N  

and lim W(., t) does not exist, even in the weak sense of distributions (in ~'(RN)). 
t~o 

There is a certain analogy with a nonlinear elliptic problem. It is known that 
for each constant c > 0 the problem 

- - A u  + u p = c6 on R N (1.10) 

u > 0 on R N (1.11) 

has a unique solution uc if p < N / ( N  --  2) (no restriction on p if N = 1 or 2) 
and that no solution exists if p >= N / ( N  - -  2). The function uc is smooth in 
R u \ (0}, and near the origin the singular behaviour of u, is essentially like that 
of cE, where E is the fundamental solution of --A: 

E(x)= 

1 1 
( N - -  2) to2v [xl N-2 

1 
/ l o g  ~-~ 

if N > 2  

if N = 2 ,  

where to N is the area of the surface of the unit ball. 
On the other hand i fp  < N / ( N  - -  2) there exists a function W(x)  which satisfies 

- - A W  + W p =  O o n R  N\{0} 

W >  0 and W is smooth on R N \ {0} 

W is more singular than E at 0. 

(1.12) 

(1.13) 

In fact, IV is given explicitly by 

W(x)  = c(p, N )  [x1-2/0'-1) 

for some appropriate positive constant c(p, N) .  In addition one knows that: 

(i) W coincides with the (increasing) limit of uc as c 1' oo. 
(ii) The functions (uc) and W are the only functions satisfying (1.12) and (1.13). 
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(iii) The functions (uc) and W provide a c o m p l e t e  c lass i f icat ion of  the local beha- 
viour near x : 0 of  a n y  function u satisfying 

- - A u  + u p = 0 in Q \ {0) (1.14) 

u > 0 and u is smooth in .Q \ {0), (1.15) 

where f2 is a neighbourhood of x = 0 in R 2v. 
More precisely, if u satisfies (1.14), (1.15) then e i ther  u is smooth at x = 0, 

or  u . - ,  c E  as x ~ 0 for some constant c > 0, 
or  u ,-,~ W as x--~ 0. 
For  all these properties we refer the reader to [4, 7, 8, 9, 15]. We believe that 
similar results hold for (1.1), (1.2). ~ 

The plan of  the paper is the following. In section 2 we formulate Problem 
(1.7)-(1.9) in the phase plane and in the subsequent three sections we establish 
the existence of  a solution of  (1.7)-(1.9) by means of  a shooting argument. We 
refer to a solution of  (1.7)-(1.9) as a f a s t  orbi t .  

The proof  also demonstrates the existence of a one-parameter family of  func- 
tions which satisfy (1.7), (1.8) and the boundary conditions 

f ' (0 )  = 0, f(oo) = 0, 

but which do not satisfy (1.9). In fact they satisfy the boundary conditions 

2 

f ' ( 0 )  ---- 0 and lim ~ ' - l f ( r / )  : A > 0. 
~] --} Oo 

We refer to these solutions as the s low  orbi ts .  Their existence (for any given 
A > 0) has been established earlier by KAMIN and PELETIER [11] in connection 
with an investigation of  the large time behaviour of  solutions of  (1.1). 

In section 6 we analyze the asymptotic behaviour as z] --~ oo of both the fast 
and slow orbits. Using the results of  section 6, we prove in section 7 that there 
exists at most one fast orbit, and thus, at most one solution of  (1.7)-(1.9). 

Finally we mention a study of  HARAUX and WEISSLER [10] of  solutions W of  
the form (1.6) of  the equation 

ut - -  A u - -  u v = O o n B  ~• 

u > 0 on R~v• (0, oo). 

They are led to an equation similar to (1.7) in which however the nonlinear term 
has a different sign ( - - f f  is replaced + i f ) .  Their methods and conclusion are 
quite different from ours *. 

* After the manuscript was completed, we received two preprints from WEISSLER 
[16, 17]. In [16] he extend his analysis with HARAUX [10]. and in [17] he proves the 
existence of a solution f o f  Problem (1.7)-(1.8)-(1.9) when p < 1 + (2/N). The asymp- 

O ( e - ~  "~2 (,-Jr)/2) See also [20] totic behaviour off(r/) as r/-+ oo is shown to be ~/ . 
and [22]. 

1 Thus has been established in KAMUq-PELETER [18] and L. OSWALD [19]. 
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2. Preliminaries 

We consider the problem 

u + uu,:o 
(A) u > 0 Wx ~ 0, 

Vx > O, (2.1) 

u'(0) = 0, u(oo) : 0 (2.2) 

0~ > 0 and p > 1. Problem (1.7)-(1.8)-(1.9) is a special case of  Prob- in which 
lem A, in which ~ = 2/(p -- 1) and the behaviour of u(x) as x - +  cx~ is further 
prescribed to be o(x-~). Note that 

N + 2  
P <  N ~ o ~ > N .  

In this section, and the next three sections we shall prove that there exists a solu- 
tion u of Problem A such that u(x) : o(x -~') as x--~ c~. 

Theorem 1. Suppose p > 1 and e~ > N. Then there exists a solution of  
Problem A with the property 

lim x~u(x) = 0. (2.3) 
x---~ o ~  

The proof  of this theorem is based on a shooting argument in the phase plane. 
Thus, we write equation (2.1) as a first order system 

(B) v ' =  N -  1 
- -  q -  v - -  f ( u ) ,  

X 

where 

0r 

f (u)  = "~  u -- u p. (2.4) 

This system has two critical points: (0, 0) and (A, 0), where A = (oq2) 1/~-1). 
For  each 7 E [0, A], let (u(x, y), v(x, Y)) be the solution of  (B) which satisfies 

(u(O, 7), v(o, 7)) = (7, o). 

It  was shown in [13] that this solution is well defined and twice continuously 
differentiable in some interval [0, Xo], Xo > 0, and that 

u'(x, Y) 1 
x-~01im x = u"(0, y) -- N-f(y). (2.5) 

We wish to prove that there exists a number Yo E (0, A) such that u(x, Yo) 
exists and is positive for all x ~ 0, and satisfies (2.3). The proof  is broken up 
in a number of  steps. We first prove in section 3, that if y is sufficiently close to 
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A, then u(x, y) > 0 for x > 0. We shall see that this implies that u(x, y) --> 0 
as x -+ oo. Then, in section 4, we discuss the rates at which u(x, y) may approach 
zero and finally, in section 5, we complete the proof  of  Theorem 1, showing that 

Yo = inf{y E (0, A) : u(x, 7) > 0 for all x > O} > 0 

and that u(x, Yo) has the asymptotic behaviour prescribed in (2.3). 

3. Global Behaviour in the Phase Plane 

We begin with some notation. For  2 > 0, let 

5r = {(u,v):O <_u<_A,v<= O} 

. ~  = {(u, v) E 5" : v > - ; t u )  

~ = {(u, v) E s ~  : v = - - ~ u ) ,  

and for e > 0 we define 

d a  = ((u, v) E S ~ : II (u, v) - -  (A, 0) ll < ~). 

A 

Fig. 1. The sets 5r .~ ,  ~,a and de. 

Lemma 1. For every 7 E (0, A) there exists a number Xo > 0 such that 

(u(x, 7), v(x, Y)) E 5P for 0 <~ x ~ Xo. 

I f  (u(x, Y), v(x, Y)) ever leaves 5r it must do so through the half line {(u, v) : u = O, 
v <  O). 

Proof. The existence of a number Xo > 0 follows from (2.5). If  (u(x, 7), v(x, Y)) 
leaves S~ it cannot do so through the top or the right side of ~ because on those 
sides the vector field determined by (B) points into 5~ for all x > 0, and not 
through the corners since they are equilibrium points. 

Thus, ' for  any 7 E (0, A), (u, v) enters 5 r and we now need to find conditions 
on 7 which ensure that it does not leave it. 
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Lemma 2. For any 3. > 0 there exists a ~ > 0 such that .oq'x is positively 
invariant for  x > ~h. That is, i f  (Uo, Vo) E ~a, Xo > ~ and (u(x), v(x)) is the 
solution of  (B) which satisfies (U(Xo), V(Xo)) = (Uo, Vo), then (u(x), v(x)) E .~a for  
all x >= Xo. 

ProoL We shall show that, given 3. > 0, there exists a ~h > 0 such that 
if x > ~h, then the vector field determined by (B) points into ~h,  except at the 
critical points (0, 0) and (A, 0). 

On the top (v = 0): 

1 _:) 
= - -  ~- v -- f ( u )  < O for all x > O ,  

X 

while on the right side (u = A), 

u ' - - - - -v<0  for all x > 0 .  

Thus, on the top and on the right side, the vector field points into L, Oh for all 
x > 0. On lh we must prove that v'/u' < --3. for x sufficiently large. This is true 
because on la: 

u ' - -  + v -- x + +2-2---  3. 

C -:) < - + + } - ~ <  - 2  
X 

if x > ~a, where ~ = 23, + (oc/3,). 

Lemma3.  Given $ , e > 0 ,  there ex&ts a ~ > 0 such that i f  7 E (A -- 6, A) 
then (u(x, 7), v(x, 7)) E ~ for all x E [0, ~]. 

Proof. Note that (u(x, A), v(x, A)) = (A, 0) for all x > 0. Thus, the result 
follows from Lemma 1 and the continuous dependence on initial data. 

Lemma 4. Given 2 > O, there exists a Oh > 0 such that i f  7 E (A -- Oh, A), 
then (u(x, 7), v(x, 7)) E ~q'a for  all x > O. 

Proof. Choose e so small that ~1~ C L~~ By Lemma 2, .s is positively in- 
variant for x > ~a and by Lemma 3 it is possible to choose a 6h > 0 so that 
if 7 E (A -- 6h, A), then (u(x, 7), v(x, 7)) E d~  C ~c, ea for 0 -< x < ~a. Thus for 
7 E (A -- 0h, A) the solution does not leave ~h  for any x > 0. 

Lemma 4 implies that if 7 is sufficiently close to A, then u(x, 7) > 0 for all 
x > 0. We shall see in the next lemma that this implies that u(x, 7) -+ 0 as 
X ----->" ~ o  

Lemma 5. Suppose that for some 7 E (0, A), u(x, 7) > 0 for all x > O. Then 
lira u(x, 7) = O. 

x - - ~  
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Proof. By Lemma 1, u'(x, Y ) =  v(x, y ) <  O, whence u(x, y) is decreasing 
and bounded below. Therefore 

Suppose fi > 0. Then 

- -  d e f  
u -~ lim u(x, y) exists. 

u" + x -k = -- f (u)  -+ --fCfi) < 0 as x --~ oo. 

Hence there exist numbers e > 0 and Xo > 0 such that 

Write 

and 

x + < --e for x >  Xo. (3.1) 

N - - 1  x 
a ( x )  = ~ + - -  

x 2 

/f 1 w(x) = exp a(s) ds . 
*,Xo 

Then, setting u(x) = u(x, y), (3.1) can be written as 

(w(x) u'(x))' < - e w ( x ) ,  

which yields, upon integration from Xo to x 

Hence 

Note that 

x 

w(x) u'(x) < u'(xo) - ~ w(s) ds < --~ f w(s) ds. 
Xo Xo 

f w(s) ds 
u'(x) < - ~  ~o 

w(s) 
(3.2) 

x 

f w(s) ds 
lim ~~ 

x--r oo 1 

a(x) w(x) 

w(x) 
lim 
x-+ oo a'(x) 

w(x) a2(x ) w(x) 

a'(x)/-' 
= l i r n  1 - - a - - ~ j  

= 1 .  
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Using this in (3.2) we conclude that 

8 e 

u'(x) < --  2a(x-----Y < --  2--x 

which implies that u(x) ~ --o0 as x ~ oo. 
that u ( x ) > O  for all x > O .  

It remains to prove that there exists a y E (0, A) for which u(x, 7) > 0 for 
all x > 0 and, in addition, x~u(x,y)---~ 0 as x - + o o .  Before doing this we 
investigate the behaviour of  solutions near the origin in the phase plane. 

for x large, 

This contradicts the assumption 

4. Local Behaviour near (0, 0) 

For convenience we write (u(x, 7), v(x, 7)) = (u(x), v(x)). 

Lemma 6. Assume that u(x) > 0 for  all x >: O. Then 

" v(x)  
lm ~ exists in [--oo, 0]. 

x-~oo u(x)  

Proof. Lemma 1, together with the assumption that u(x) > 0 for all x > O, 
implies that v(x) < 0 for all x > O. Let 

v(x)  
lira sup 2x, 

x ~  u(x)  

v(x) 
lim inf = --22. 

x ~  u(x) 

(4.1) 

Suppose that ;t t ~ 22 and fix 23 so that 2t < 23 < 22. Then there exists a 
sequence (Xk) such that xk ~ oo as k -+ oo and 

v(xk)_ --23 for all k > 1 
U(Xk ) > = , 

Choose k* so that Xk, ~ ~a3. Then (U(Xk.), V(Xk*)) E - ~ ,  and hence, by 
Lemma 2, (u(x), v(x)) E "~q'~3 for all x ~ Xk,. This is impossible by (4.1) and 
the fact that --22 < --23. 

Lemma 7. Suppose u(x) > 0 for  all x >: O. Then 

v(x)  v(x)  
either lim ~ = 0 or lim = - -oo.  

. . . . .  u(x) 

Proof. Let us assume that 

r v ( x ) ,  
lm-7- - :~= 

x ~  oo u k x  ) 
- - 0 0  . 
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Then, by Lemma 6, 

By l 'H6pital 's rule 
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o ~  v (x )  
L = u m  ~ exists in (--oo,  0]. 

x +oo u ( x )  

L = lim v'(x) 
~-~oo u ' ( x )  

= lim l / _  ( N - 1  
x-+oo V / X 

o, ,. u ( x )  . ( x )  
= -- �89 lim x -- -~- nm ~ �9 u P - I ( x )  x, o + x im 

or 
= - - � 8 9  x - - - - .  

x-,oo 2L 

This is impossible unless L = 0. 

5. Proof of Theorem I 

Define the set 

{ u(x, v(x' V ) -  O} y) (5.1) S = ~, E (0, A) : u(x, ~) > 0 for all x > 0 and lina 

and let 

70 = inf S. (5.2) 

We assert that the solution u(x, 7o) has the desired asymptotic behaviour as 
x ---> o o .  

Lemma 8. S is nonempty. 

Proof. By Lemma 4, if 7 E (0, A) is sufficiently close to A, then u(x, 7) > 0 
and lira v(X, 7)/u(x, 7) 4 = --oo. This means, by Lemma 7, that lira v(x, 7)/ 

X---)- oO X--~ Oo 

u(x, 7) --- 0 and thus that ), E S. 

Lemma 9. S is open. 

Proof. Let 7"  E S. Then, given any 2 > 0 there exists a x~ > 0 such that 

v(x, 7") 
u(x, 7") > --2 for x > xa. 

Define x* ---- 2 max {~:2~, xa} and 

a~ - -  {(u, v) : II(u, v) - u((x*, ~,*), v(x*, ~'*))/I < e) .  
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Choose ~ so small that BQ Q s This is possible because (u(x*, 7"), v(x*, 7")) Q 
~ a  Q La2~. By continuous dependence of  the solution on initial data, there exists 
an e > O  such that 

17 - 7"1 < ~ ~ (u(x*, 7), v(x*, 7)) ~ ~ .  

Clearly, u(x, 7) > 0 when 1~ --  7"1 < e, because for xE  [0, x*], u(x, 7) 
u(x*, 7) > 0 and for x > x*, u(x, 7) E s 

Hence 

v(x, 7) 
lim . > --22 > --cx~ 
x ~  u(x, 7) = 

which implies, by Lemma 7, that 

v(x, 7) 
lim - -  - -  O. x-~oo u(x, 7) 

Thus ( 7 * - - e ,  7 * q - e )  QS-  

Lemma 10. I f  o~ > N, then 70 > O. 

Proof.  Choose 7 E (0, 70 ,  where 71 = {(o~ - -  N)/2} ll(p-1). We shall show 
that u(x )=  u(x, 7) vanishes for some x > O. 

Suppose to the contrary that u(x) > 0 for all x > O. Then 

1 u" + + + - ~ - u -  uP = O 

or, when we multiply by x N-l, 

for 0_< x <  cx~, 

o~ . N-~ xN-Iu p 0 for 0 < = x < co.  E ~ i @ zXNU' @ 2 . ~  U - -  = 

I f  we integrate over (0, x), and integrate by parts, we find that 

N -- o~ f sN_lu(s) ds q- .f sN-1u~(s) ds. (5.3) X N -  1Ut(X)  JU 1 x N u ( x )  - -  2 o o 

Since u(x) > 0 it follows from Lemma 1 that u'(x) < 0 for all x > 0. There- 
fore 

X X 

f sN-'uP(s) ds < 7 "-1 f sN-'u(s) ds, 
0 0 

and hence, by (5.3), 

where 

xN--IU'(X) + -} xNu(x) < --~' f sN--lu(s) ds, 
0 

~' = 7 f  - 1  - -  7 p - 1  > 0 .  T h e r e f o r e  

(5.4) 

u'(x) + -} xu(x) < 0 for x > 0 
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which implies that 
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u(x) < ~,e -~x~ for x > 0. (5.5) 

Now let x ~ oo in (5.4). Then, in view of  (5.5), 

lim sup xN-lu'(x) <~ --~ 7 sN-~u(s) ds def --28. 
x--* oo 0 

Hence, there exists a number Ro > 0 such that 

xN-lu'(x) < --8 for x > Ro, 
o r  

u'(x) < --~x I-N for x > Ro. (5.6) 

Choose R 2> Ro, and integrate (5.6) over (x, R), x > Ro. I f  N 4 2 this yields 

u(x) > u(R) + ~ ( R  ~-N -- x2-N). (5.7) 

I f  N < 2, the right hand side of  (5.7) becomes unbounded if R--~ 0% which 
is of  course impossible, and if N > 2, (5.7) yields, in the limit as R ~ oo: 

u(x) > ~ x 2-~r for x > R o .  

This is incompatible with the earlier estimate (5.5). Finally, if N = 2 we obtain, 
instead of  (5.7), 

R 
u(x) > u(R) + ~ log-~- 

which yields a contradiction again when we let R ~ oo. 

Remark. It follows from the proof  of  Lemma 10 that if 0~ > N, then 

[~ - -  N \  11 

t--r-),- 
In the last lemma of  this section we shall show that the function u(x, Yo) is a 

positive solution of  Problem A, which has the asymptotic behaviour, as x --* 0% 
prescribed in (2.3). Thus, Lemma 11 completes the proof  of Theorem 1. 

Lemma 11. The function u(x, Yo) has the properties 

(i) u(x, Yo) > 0 for all x >= O, 
(ii) for each 2 > 0 there exists a constant Cx > 0 such that 

u(x, ~'o) <= Cx e-ax for x >= O. 

Proof. (i) Choose {~'k} C S such that ~o---- l im ~'k. Then, for all x ~ 0, 

u(x, Yo) : lim u(x, Yk) >~ O. (5.8) 
k--+ r 
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Suppose that u(xo, 70) = 0 for some Xo ---- 0. Then by uniqueness u'(xo, 70) < 0 
whence there must exist a t~ > 0 such that 

u(X, yo) < O for X o < X < X o §  

This is impossible because of (5.8). 
(ii) Since 70 r S, it follows from Lemma 7 that 

v(x, 70) 
lim - -  - -oo .  
~-~o~ u(x, 70) 

Hence, for any 2 > 0 there exists a number  Ra ~ 0 such that 

u'(x, 70) < --2 for x --> Ra 
u(x, 70) = 

and hence 

u(x, 70) <= Ca e -ax 

where Ca = u(Ra, 70) eaRa. 

Corollary 12. lim x~'u(x, 70) = O. 
X--~- o~ 

for x ~  Ra 

6 .  B e h a v i o u r  a s  x ~ o o  

Recall f rom Lemma 7 that if u(x, 7) > 0 for x large, then 

v(x, 7) v(x, 7) 
either lim - -  - -  cx~ or lim - -  - -  0. 

~ u ( x ,  7) ~ u ( x ,  7) 

We shall say that u(x, 7) is a fast  orbit if the limit is --oo.  I f  the limit is zero we 
shall say that u(x, 7) is a slow orbit. In this section we determine the asymptotic 
behaviour of  both the fast and the slow orbits. This analysis will be used in 
the next section when we prove that the fast orbit is unique. 

The estimates are all obtained by a very elementary method, the main tool 
being l 'H6pital 's  rule. The power of  this method was first observed by SERRIN 
[14]. 

1. Fast orbits. Let (u(x), v(x)) = (u(x, 7), v(x, 7)) where u(x, 7) is a fast orbit. 

v(x) 
L e m m a  1 3 .  l i m  - -  �89 ~-~ oo xu(x) 

Proof. By Lemma 11, xu(x)-+ 0 as x - + ~ ,  and 

N - -  1 ~ )  
v ' +  x + v- -O(e  -ax) 
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for  any ;t > O. Hence v(x) ~ 0 as x ~ oo. Therefore, using l 'H6pi ta l ' s  rule 
and the fact that  u ( x ) / v ( x ) ~  0 as x ~ oo we obtain 

v(x) v'(x) 
lim ~ = lim ,, , 

~-~oo xu(x) x-~oo xu tx) + u(x) 

lim 

(N1 _:) 
- x + v - - ~ u +  u ~ 

X " +  O0 x v +  u 

m w 

= lim 
X - - - ~  O 0  

N - - 1  
X 2 

m � 8 9  U Ac up_I U 
2x v v 

l U 
l + - - m  

X P 

= - - � 8 9  

Define the function 

E(x) = xv(x) + k x2u(x). ( 6 . 0  

,. E (x )  
L e m m a  1 4 .  u m  - -  = 0~ - -  N .  

~-~oo u(x) 

Proof .  Note  that, by l 'H6pi ta l ' s  rule, 

l E(x) E'(x)  
lm ~ = lim 

~-~oo u(x) ~-~oo v(x) ' 

if the second limit exists. However,  an elementary computa t ion  shows that  

E'  xu ( o, ) 
- -  (2  - -  N )  + - -  - - - ~ - +  1 - t - u  p - I  

P V 
(6.2) 

whence, by Lemma 13 

E'(x)  
lira 

x + =  v(x) 
: 2 - - N - - 2  

Define the function 

6(x)  = x2E(x) -- (o, --  N ) x 2 u .  (6.3) 

,. C(x)  
L e m m a  1 5 .  l l m  - - =  2(o~ - -  N ) ( ~  - -  2 ) .  

x-~oo u(x)  

Proof .  By Lemmas  11 and 13, G(x)--~O as x - -~oo .  Thus by l 'H6pi ta l ' s  
rule 

r G(x) C ' (x)  im ---;--v = lim 
x-~oo utxj x-~oo v(x) (6.4) 
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if the second limit exists. But 

whence, by Lemma 14, 

(6.5) 

o,x, } 
l i rn  v(x) = l i rn  x 2 --  (o~ - -  N )  (6.6) 

if the limit exists. Remembering (6.2) we find 

( x. 
- - - -  (~x-- N)---- 2 - -  ~x + 1 - -  ~ - [ -  ~ "  U p - 1  

/3 v 13 

----- 1 - -  2 +  + ~ u  p-I 
v 

v +  ) xu  xu  
- - ( 2 - o r  �89 . _ _ + _ _ u  p-I  

v v 

2 - -  or E X U  X U  
_ _ .  _ _  A I- ~ u P  - 1  

X 2 V V V " 

(6.7) 

Thus, by (6.4), (6.6) and (6.7), and Lemmas 13 and 14 

" G(x) E xu  
lm - - ' T v  = ( 2  - -  ~x) lim . . . .  2(o~ - -  N )  (or - -  2 ) .  

x ~ o o  U ( X )  x ~ o o  V V 

The following theorem describes the asymptotic behaviour of  the fast orbit 
as x - +  oo. 

Theorem 2. Let  u be a positive solution o f  Problem A, which corresponds to 
a fas t  orbit. Then there exists  a constant A ~ 0 such that 

U ( X )  = A e - l X 2 x  ~ - N  1 - -  (or - -  N )  (o~ - -  2)  -~ + o a s  x - +  o o .  

Proof. By Lemma 15, 

a(x)  
u(x) = 2(~x - N)(~x --  2) + e(x), 

where e(x) -+ 0 as x - +  oo. Hence, recalling the definition (6.3) of  G, 

E(x)  1 e(x) 
u(x) = (or - -  N )  + 2(o~ --  N) (~x -- 2) -~  + x--i-, 

or, in view of the definition (6.1) of  E: 

u'(x) 
u(x) �89 x + 

o~ - N 1 e ( x )  
x + 2(~x --  N) (o~ -- 2) --~ + x---T-. 
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Integrat ion f rom x = 1 to x > 1 yields 

og u(1) = - -  �88 (x2 - -  1) + log x e ~ - N -  (0~ - -  N )  (c~ - -  2) I _ 1 + 

whence 

fs-3e(s) ds, 
1 

I 
u(x) = A e  - ~ 2  x ~ - N I 1  - - ( ~  - -  

where 

N)  (o~ - -  2) - ~  + o as x---~ cx~, 

A = u(1) exp �88 -}- (o~ - -  N)  (o~ - -  2) q- f s-3e(s) ds . 
1 

2. Slow orbits. Let  (u(x), v ( x ) ) =  (u(x, 7), v(x, ~)), where u(x, 7) is a slow 
orbit. 

xv(x) 
Lemma 16. lim - -  x ~  u(x) m 0~. 

Proof .  Set z = v/u. Then, using the differential equat ion (2.1) for  u, we find 
that  

0r 

z'  + �89 x z  --  2 + Q(x), (6.8) 

where 

e(x)=up-1(x) 
N - - 1  

X 
- - z ( x ) - z 2 ( x ) .  

Because u is a slow orbit, z(x) -+ 0 as x -+  0% and hence p(x) -+  0 as x ~ co.  
Multiply (6.8) by e ix2 and integrate over (0, x). This yields, after dividing 

by e ix' again and remembering that  u(0) ---- y > 0 and v(0) = u'(0) = 0, 

0 

(6.9) 

By l 'H6pi ta l ' s  rule, 

x 

lim o 
x-~oo 1 

etX" 
X 

Using this in (6.9) we finally obtain 

ds 

lim 

lira xz(x)  = --o~. 
x---~ o o  
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Corollary 17. For every e > 0 there exists a constant K ,  > 0 such that 

u(x) ~ K,x -(~-0 for x ~ O. 

Proof. By Lemma 16, 

u'(x) 
. . . .  [I + ~(x)],  
u(x) x 

where e(x)-+ 0 as x - +  co. The result now follows upon integration. 

Lemma 18. Suppose that 

2 

lim xp-I  u(x) : L exists. 
x.-~ oo 

Then 

l imx2(xz (x )  + or = --2o~(o~ --  N + 2) + 2L p-1 . 

(6.10) 

Proof. Write, using (6.9), 

x={xz(x) + ~,} = 

Thus, by l 'H6pital's rule, 

lim x2(xz(x) + ~) = lim 

Recall that 

x } - -  -- 9(s) e ts" ds + - -  e Ix 
X 

0 

x - 3 e ~ X 2  

O(x) x2 

1 3 
2 X  2 X 4 

2~ + 2 lira x20(x). 
x-~ oo 

e(x)=u"-l(x)  
N - - 1  

X 
- - z ( x )  -z~(x) .  

Hence, by Lemma 16 and (6.10), 

l i m  xZ{xz(x) + or = --2~(o~ -- N + 2) + 2L p - ' .  

We now consider two cases: 

2 2 
I . p > l + - -  and II. l < p ~ l + - - .  

2 
CaseI .  p >  1 + - - .  

0r 

2 
Lemma 19. I f  p > 1 + ~ ,  then 

0r 

l i m  xZ{xz(x) + 0r = --2o@~ -- N + 2). (6.11) 



202 H. BREZIS, L. A. PELETIER (~ D. TERMAN 

Proof .  By Corol lary  17, given e > 0 there exists a constant  K, > 0 such 
tha t  

x2up-l(x) <= K~-Ix2-(p-~)~-~). 

Because p > 1 -k (2/00 and thus (p - -  1) o~ > 2, it is possible to choose e > 0 
so that  (p - -  1) (0~ - -  e) > 2. Therefore  

L p-1 ----- l im xZuP-~(x) = O. 
x - - - ~  o o  

The assertion now follows f rom L e m m a  18. 
In the following theorem we translate (6.11) in terms o f  the behaviour  of  

u(x)  as x - +  ~ .  

Theorem 3. Suppose that p ~ 1 q- (2/00. Le t  u be a solution o f  Problem A, 
which corresponds to a slow orbit. Then there exists  a constant A ~ 0 such that 

u(x) = A x  -~  1 -k o~(o~ - -  N + 2) .  - -  + o as x -+ cx~ 
X 2 " 

Proof. By Lemma 19, 

u'(x) o~ 2or - -  N + 2) 

u(x) x x 3 
[1 + e(x)], 

where e(x) --+ 0 as x ~ cx~. The  p r o o f  is comple ted  as in the p r o o f  o f  Theo rem 2. 

2 
Case II .  1 < p ~ 1 + - - .  We begin with a prel iminary estimate.  

0r 

Lemma 20. Suppose 1 < p ~ 1 + (2/Lx). Then f o r  any k < offp - -  1) 

l im xk(xz (x )  + ~) : O. 
x - - - ~  o o  

Proof .  As in the p r o o f  of  L e m m a  18, we write 

x 

xk{xz(x)  "k 0~) = X _ l _  k etX, 

and deduce by means  o f  l 'H6pi ta l ' s  rule 

O~ 
-~- - -  e i X  2 

X 

0r  

e(x)  x2 
l im xk{xz(x )  + <x} = l im �89 x -  k (1 + k)  x - 2 - k  = 2 lim xk0(x) 

x - - - ~  o o  x - - >  o o  _ _ _  x . - ~  o o  

i f  the last limit exists. 
By L e m m a  16, z(x)  ,.~ - - ~ / x  as x---~ e~, whence, since k < 2, 

l im xkz2(x) ----- 0 
x - - ~  c Q  
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and 

lira x k z ( x  = O. 

By assumption, k < o~(p -- 1), so that it is possible to choose e > 0 so small 
that k < (o~ -- e) (p -- 1), and hence, by Corollary 17, 

x~uV-I(x) =< K~x ~-(~-~)~p-1) for all x ~ 0 

for some constant K, > 0. Therefore, 

lira xkuP-I (x)  = O, 

as well, and we have shown that 

lim xkg(x) = 0. 
X---~ o o  

This completes the proof. 

Lemma 21. Suppose 1 < p _<_ 1 + (2fix) and k < o~(p --  1). Then there exists  
a constant A > 0 such that 

u(x) ---- A x - ~ [ l  + o(x-k)] as x - +  c~ .  

Proof.  By Lemma 20, 

u'(x) o, ,(x) 
u(---~ - x + x k+--'I' 

where e ( x ) ~  0 as x--~ co. The result now follows upon integration. 

Corollary 22. I f  1 < p ~ 1 + (2/~), then 

lim x~u(x) ---- A exis ts .  
X---~ o o  

We are now ready to prove the desired asymptotic estimate when 1 < p 
1 + (2/00. 

Theorem 4. Suppose 1 < p ~ 1 + (2/00. Le t  u be a solution o f  Problem A, 
which corresponds to a slow orbit. Then there exists  a cons tan t  A > 0 such that 

where 

B 
u ( x ) =  A x  -~' I + o f f p _  1) x -~(v-l) + o(x-~v-1))} as x - +  oo , 

B = 

2offc~ -- N + 2) -- 2A v -  1 

__2Ap-1 

2 
i f p = l + - -  

o~ 

2 
/ f p <  1 + - - .  
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Proof .  We proceed as in the proof  of  Lemma 20. Setting k = 0~(p - -  1) we 
find that 

lira xk{xz (x )  q- o~} = 2 lim xkp(x)  - -  2g lim x k-2 

= 2 lim xkuP-I (X)  - -  2 ( N -  1) lim x k - l z ( x )  
x - + o o  x-- -~  o o  

- -  2 lim XkZ2(X) - -  2o~ lim x k-2 
x - + o o  x - ~ -  o o  

Note that p < 1 q- (2/0~) implies k _< 2. Thus, by Lemma 20, we have 

lim xz ( z )  = --o~, 
x---~ o o  

it follows that 

and 

Thus 

l i m  .xa'{xz(x) -I- o~} = 2A p -  1 _ 2o@~ --  N -k 2) if k ----- 2 

lim xk{xz (x )  q- o~} = 2A p - I  if  k <~ 2. 
x---~  o o  

u'(x) o~ B 
u(x----) - -  x X k + l  [1 + e(X)], 

where e(x)  -+ 0 as x --~ oo. Proceeding as in the proof  of  Theorem 2, we obtain 
the desired asymptotic estimate. 

R e m a r k  1. We see from Theorems 2, 3 and 4 that the first two terms in the 
asymptotic expansion of  u(x)  for the fast orbit, and also for the slow orbit if  
p > 1 + (2/00, are not affected by the nonlinear term, but that for the slow 
orbit the second one is if 1 < p ~ 1 -1- (2/0~). 

R e m a r k  2. It  is interesting to observe that the asymptotic behaviour of  solu- 
tions of  the linear equation corresponding to (2.1), 

u"  + x + + -~-u = 0 (6.12) 

can be obtained by transforming this equation to a standard form. We set 

N x 2 

u ( x ) =  x 2 e S y ( t ) ,  and x 2 - - 4 t .  

Then, in terms of  the new variables we obtain 

y " - k  - I + - 7  + -  y-- - -0  (6.13) 

in which 

= �88 (2o~ - -  N ) ,  /z = �88 ( N  - -  2 ) .  
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Equation (6.13) is Whittaker's equation [1, p. 505]. One solution is given by the 
function 

y( t )  ---- e -�89 t�89 b, t ) ,  (6.14) 
where 

N--o~ N 
2 ' b = 1 -+- 2,u =-~-- 

and 

U(a, b, t) = cglt-a{l  -- a(1 q- 

The other solution is given by 

a --  b)---7 + O( t -2 )  as t--.  c~. 

y( t )  = e -�89 t �89 M(a,  b, t) (6.15) 

in which 

M(a,  b, t) ---- ~2ett  "-b 1 q- (b - -  a) (1 - -  a)-7- q- O(t-2)  as t ~ c~. 

Here call and cg 2 are appropriate constants. 
Returning to the original variables u and x, we find that the first solution 

(6.14) yields the asymptotic expansion for the f a s t  orbit corresponding to the 
one given in Theorem 2, and the second solution (6.15), the asymptotic expansion 
for the slow orbit, corresponding to the one derived in Theorem 3 (p > 1 + (2/00). 

7. Uniqueness 

In this section we shall prove that the solution u of Problem A whose existence 
was asserted in Theorem 1 is also unique. 

Theorem 5. Suppose p ~ 1 and o~ ~ N. Then there exists at most  one solu- 
tion o f  Problem A which has the property  

lim x~u(x) = O. 
x---~ oo 

In other words we shall prove that the fas t  orbit is unique. 

Proof. We exploit the concavity of the function 

0r 

f l u )  = T u - u p.  

It is well known that in many instances the concavity of the nonlinearity implies 
the uniqueness of positive solutions. (See for instance KRASNOSELSKI [12] chap- 
ters 6 and 7 and BERESTYCKI [2]). 
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Here�9 we use a device inspired by an argument of  BENGURIA, BREZIS and LIEB 
([3] Lemmas 4 and 11). See also [21]. 

Suppose that ut and u2 are positive solutions of  Problem A and 

lim x%i(x) = 0 i = 1, 2. 
x---~ oo 

We know by Corollary 17, Theorem 2 and Lemma 13 that 

and 

ui(x) = e-X2/gX~'-N[1 + O(X-2)] as x - +  oo 

�9 t /2,(x) 
= x [ - - � 8 9  -}- o(1)1 u~(x) as x - +  oo. 

Set K ( x ) =  xN-lex=/4. I f  we multiply the equation for ut by K/ui and sub- 
tract the resulting expressions, we obtain 

(Ku;)' (Ku~)'__+ Klf(u , )  f(u2) I 
ul u2 I ul u2 ) 

= 0 .  

Now multiply this equation by u 2 --  u 2 and integrate over (0, R). This yields 

' ! t / 

_.r.,(R) .2(R)~.:.o. /:(- u') :~))(u~ .~)/<,x K(,V/u-- ~ u-i-E]~u,t.)-ui(R)} + 
0 t ~/1 /22 ) 

:{( ( R t 2U2U2 Ul/A'; ~ , t 2UI__._UI ldlU2 ~ / 
= ,;  u, 7.-7 ~- . ~ / +  .2 .2 .2 ~ .~ 11 Kex" 

0 

T h e  integral on the right hand side may be written as 

. . . . . .  f u ; - - -  + u 2 -  = o u2 / ul / / 

Therefore we obtain 

R 

f / :~) :~),)(.?-4)Kd~ ~o(1) as R--->oo. 
o t ul u 2 J  

On the other hand the function u--->f(u)/u is decreasing on (0, oo) and thus 

ul u2 1 

almost everywhere on the set {x > 0: u~(x) ~ u2(x)}. As we let R tend to infinity 
w e  see  t h a t  u 1 -~  u 2. 
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Appendix 

Here we give an estimate for the difference between the solution u of the 
problem 

u, - -  Au + u p = 0 on RNx (0, cx~) 

u > 0 on R u • (0, ~ )  

u(x, O) = aO(x) on R N 

in which a E R +, and the function aE, where E is the fundamental solution of  
the heat operator ( O / S t ) -  A:  

1 Ixl2 

E(x,  t) - -  (4re)m2 e 4t 

Proposition. Suppose 1 < p < 1 + (2/N) and a > O. Then there exists a 
constant C, which only depends on p and N, such that 

in which 

]u(x, t) - -  aE(x, t) I ~ CaPt"E(x, t) 

v = - ~  --  p 

for  x E R N, t > 0 

> 0 .  

Proof. By the maximum principle we have 

u(x, t) ~= aE(x,  t) for x E R N, t > O. 

On the other hand, 

(A1) 

t 

u(., t) = s(t) (a~) - f S(t - s) u'( ., s) ds, 
0 

where S(t)  denotes the semigroup generated by A, that is S(t)ff-----E(',  t )*  ~b, 
where �9 denotes the convolution product and q~ is some initial function. 

We deduce from (A1) that 

uP(x, t) G aPEP(x, t) = C1 tN(p_l)/'--'-'--- ~ E X, , 

where C~ = (47~)--N(p--1)/2p -N/2. Hence, using the semigroup property, we 
obtain 

[u(x, t) - -  aE(x,  t)[ < G a  p S( t  - -  s) S O(x) sN(P_,/2 
0 

' (  s )  ds 
-=- C,a p ~  S t - -  7 6(x) sN(P_,)/2 , 

(A2) 
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where p'  is defined by (1/p') + (l/p) = 1. But 

( - - 7 )  ~ - - [  ( - - ' ) / - -~  ' " '  ( ~  t -  
S t ~4~ t - -  p, = < t e --~7" 

when 0 ~ s < t. Using this in (A2) we find that 

I u(x,  t)  - aE(x ,  t)  l < Clap t 2 e ~ : s N ( P - -  1)/2 
0 

in which the integral exists because p < 1 q- (2/N). Thus 

] u(x, t)  - aE(x ,  t) l < CaPt~E(x, t),  

where ~, is given in the Proposition and C = (4~)-N~ -1. 
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