A PROPERTY OF SOBOLEV SPACES

Haim BREZIS

Felix BROWDER

Université PARIS VI

University of Chicago

4, place Jussieu

CHICAGO, 111. 60537

75230 PARIS CEDEX 05

Introduction.

In the present paper, we study a property of the Sobolev space $W_0^{1,p}(\Omega)$ for an arbitrary domain Ω in \mathbb{R}^N which plays a very useful role in the study of singular second order elliptic (and parabolic equations), singular either because of a strong nonlinearity or because of singularities in the coefficients.

In an earlier paper [1] the authors proved the following result.

Let Ω be an open set in \mathbb{R}^N . Assume $T\in H^{-1}(\Omega)\cap L^{f 1}_{\rm loc}(\Omega)$ and $u\in H^1_{\Omega}(\Omega)$ are such that

$$T(x)u(x) > g(x)$$
 a.e. on Ω

with $g \in L^{1}(\Omega)$. Then $T.u \in L^{1}(\Omega)$ and

$$< T,u > = \int T(x).u(x) dx$$

where $\langle .,. \rangle$ denotes the scalar product in the duality of H^{-1} with H_0^1 .

We extend this result here and in particular, replace the assumption " $T\in L^1_{\hbox{loc}}(\Omega)$ " by " T is a measure " .

We indicate some open problems and describe various examples.

We thank Professor J. Dieudonné for providing us with the example quoted in § 3.

We note also that the result of [1] has been applied to the study of the essential self-adjointness of Schrödinger operators with singular potentials in [2].

We briefly recall the definition and some properties of capacities . Let $\Omega \subset \mathbb{R}^N$ be an (arbitrary) open set and let $1 . The Sobolev space <math>W^{1,p}_{\mathbf{O}}(\Omega)$ is the closure of $\mathfrak{D}(\Omega)$ for the norm

$$\|u\|_{W_0^{1,p}(\Omega)}^p = \sum_{|\alpha| \leq 1} \left| D^{\alpha}u \right|^p dx.$$

Its dual space is $W^{-1,p'}(\Omega)$ and the scalar product in the duality $W^{-1,p'}$, $W^{1,p}_0$ is denoted by <.,.>.

For a compact subset $K \subseteq \mathbb{R}^N$ we set

$$\operatorname{cap} K = \operatorname{Inf} \left\{ \|\alpha\|_{W^{1,p}(\mathbb{R}^{N})}^{p} \; ; \; \alpha \in \mathcal{D}(\mathbb{R}^{N}) \; , \; \alpha > 0 \; \text{ on } \mathbb{R}^{N} \; \right\}$$

and for an arbitrary set $A \subseteq \mathbb{R}^N$ we set

cap $A = \sup\{\text{cap } K, K \subset A, K \text{ compact}\}$.

When p = 2 this coincides with the usual definition of capacities (see [4]).

We recall (see [4]) that if $u_n \in \mathcal{D}(\Omega)$ is a Cauchy sequence in $W_0^{1,p}(\Omega)$, then there is a subsequence u_n which converges for all $x \in \Omega$, except for a set of zero capacity. Hence every function $u \in W_0^{1,p}(\Omega)$ is defined pointwise except for a set of zero capacity.

Let $\mathcal{M}(\Omega)$ denote the space of all regular Borel measures on Ω (not necessarily bounded measures); $\mathcal{M}^+(\Omega)$ consists of nonnegative measures.

We shall use the following

LEMMA 1. ([3]). Assume $\mu \in W^{-1,p'}(\Omega) \cap \mathfrak{M}(\Omega)$. Let $A \subseteq \Omega$ be such that cap A = 0. Then A is μ -measurable and $|\mu|(A) = 0$ ($|\mu|(A)$ denotes the measure of A with respect to $|\mu|$).

§ 2 - THE MAIN RESULT

Let $\mu \in \mathfrak{M}^+(\Omega)$ be such that:

(1) for every $A \subseteq \Omega$ with cap A = 0, then $|\mu|(A) = 0$.

Let f_1 , f_2 ... $f_k \in L^1_{loc}(\Omega; \mu)$ and consider the measures

$$T_{i} = f_{i} \mu \qquad 1 \leq i \leq k$$

Assume

$$T_i \in W^{-1,p'}(\Omega)$$
 $1 \le i \le k$.

Let u_1 , u_2 ,..., $u_k \in W_0^{1,p}(\Omega)$.

THEOREM 1. Suppose that for some $g \in L^{1}(\Omega; \mu)$ we have

$$f.u = \sum_{i=1}^{k} f.u_i \ge g$$
 $\mu - a.e.$

(note that each u_i is defined μ - a.e.)

Then

$$f.u \in L^{1}(\Omega; \mu)$$
 and $\langle T, u \rangle = \sum_{i=1}^{k} \langle T_{i}, u_{i} \rangle = \int f.u d\mu$

Remarks.

- 1) Choosing μ to be the Lebesgue n-measure, we find exactly the result of [1].
- 2) Assume T_1, T_2, \dots, T_k are given in $W^{-1,p}(\Omega) \cap \mathcal{M}(\Omega)$ and set $\mu = \sum_{i=1}^k |T_i|$.

It follows from Lemma 1 , that μ satisfies (1).

On the other hand, since $\begin{tabular}{l} T_i \end{tabular}$ is absolutely continuous with respect to μ we can write

$$T_i = f_i \mu$$
 with $f_i \in L^1_{loc}(\Omega; \mu)$

and Theorem 1 may be applied.

Some open problems.

1) Let $W_0^{2,p}(\Omega)$ denote the closure of $\mathcal{D}(\Omega)$ for the norm

$$\|\mathbf{u}\|^{p} = \sum_{\alpha \in \mathbf{Z}} \int |\mathbf{D}^{\alpha}\mathbf{u}|^{p}$$
.

Let $W^{-2,p'}$ denote its dual space. Assume $T \in W^{-2,p'}(\Omega) \cap L^1_{loc}(\Omega)$ and let $u \in W^{2,p}_o(\Omega)$ be such that

T.u
$$\geq g$$
 a.e. on Ω with $g \in L^{1}(\Omega)$

Does it follow that $T.u \in L^1$ and $\langle T,u \rangle = \int Tu dx$?

2) Assume $T \in W^{-1,p'}(\Omega) \cap L^1_{loc}(\Omega)$, $u \in W^{1,p}_{o}(\Omega)$

are such that

$$< T, \zeta u > > 0$$
 $\forall \zeta \in \mathcal{D}_{\downarrow}(\Omega)$

Does it follow that T(x)u(x) > 0 a.e.?

Proof of Theorem 1.

We use an extension of the technique developed in [1]. Assume first, in addition to the assumptions of Theorem 1 that for each i, Supp u_i is a compact subset of Ω and that $|u_i(x)| \leq M$ a.e. (for Lebesgue measure). Then the conclusion of Theorem 1 holds.

Indeed let ζ_{ϵ} denote a sequence of mollifiers and let $u_{\epsilon} = \zeta_{\epsilon} \star u$. As $\epsilon \to 0$, $u_{\epsilon} \to u$ in $[W_0^{l,p}]^k$ and $u_{\epsilon}(x) \to u(x)$ for all x except for a set of zero capacity; in particular $u_{\epsilon}(x) \to u(x) \mu$ - a.e. On the other hand we have

$$< T, u_{\varepsilon} > = \int (f.u_{\varepsilon}) d\mu$$
.

It follows from the dominated convergence theorem that

$$< T,u > = \int f \cdot u \ d\mu$$
.

In the general case let $v_n \in [\mathcal{D}(\Omega)]^k$ be a sequence such that $v_n \to u$ in $[V_0^{1,p}(\Omega)]^k$, $v_n(x) \to u(x)$ for all $x \in \Omega$, except for a set of zero capacity and so $v_n(x) \to u(x) \mu$ - a.e.

Set

$$\lambda_n = (|u|^2 + \frac{1}{n^2})^{-1/2} \text{ Min } \{(|u|^2 + \frac{1}{n^2})^{1/2} - \frac{1}{n}, (|v_n|^2 + \frac{1}{n^2})^{1/2} - \frac{1}{n}\}$$

so that 0 \leq $\lambda_n \leq$ 1 and set

$$w_n = \lambda_n u$$

(here $|\cdot|$ denotes the euclidean norm on \mathbb{R}^k).

Clearly $|\mathbf{w}_{\mathbf{n}}(\mathbf{x})| \le |\mathbf{v}_{\mathbf{n}}(\mathbf{x})|$ and in particular

Supp $\mathbf{w}^n \subset \text{Supp } \mathbf{v}_n$. We deduce from the first step that

(2)
$$\langle T, w_n \rangle = \int (f \cdot w_n) d\mu$$

Next, by the Lemma in [1], we have

$$\left|\frac{\partial w_n}{\partial x_i}\right| \le 3 \max\{\left|\frac{\partial u}{\partial x_i}\right|, \left|\frac{\partial v_n}{\partial x_i}\right|\}.$$

It follows that $w_n \to u$ weakly in $[W_0^{1,p}(\Omega)]^k$ and in particular $< T, w_n > + < T, u > .$

On the other hand $w_n \to u$ pointwise, except on a set of zero capacity; thus $w_n \to u - a.e.$

Also

(3)
$$f.w_n = \lambda_n(f.u) > \lambda_n g > -|g| \mu - a.e.$$

We deduce from Fatou's Lemma (2) and (3) that $f.u \in L^{1}(\Omega; \mu)$ and

Finally, since $|f.w_n| \le |f.u|$ we conclude using the dominated convergence

Theorem that

$$< T, u > = \int f \cdot u \ d\mu$$

Example 1. (Dieudonné) Let $\Omega = \mathbb{R}$; there exists some $T \in H^{-1}(\mathbb{R}) \cap C^{\infty}(\mathbb{R})$ and some $u \in H^{1}(\mathbb{R}) \cap C^{\infty}(\mathbb{R})$ such that $T.u \notin L^{1}(\mathbb{R})$.

Choose
$$T(x) = \frac{d}{dx} (\frac{\sin(e^{x})}{1+x^{2}}), u(x) = \frac{1}{1+x^{2}}.$$

It is easy to check that $T.u \notin L^1$ using the fact that

$$\int_{-\infty}^{+\infty} \frac{|\cos e^{x}|}{(1+x^{2})^{2}} e^{x} dx = \int_{0}^{\infty} \frac{|\cos t|}{(1+|\log t|^{2})^{2}} dt = \infty$$

Example 2. $\Omega = \mathbb{R}^3$; there exists some $T \in H^{-1}(\mathbb{R}^3) \cap L^1_{loc}(\mathbb{R}^3)$

and some $u \in H^1(\mathbb{R}^3)$ such that $T.u \notin L^1_{loc}(\mathbb{R}^3)$.

Choose
$$T(x) = \frac{d}{dr} \left[\cos \left(\frac{1}{r^{\alpha}} \right) \zeta(r) \right]$$
, $u(x) = \frac{1}{r^{\beta}} \zeta(r)$ $(r = |x|)$.

where $\alpha < 2$, $\beta < \frac{1}{2}$ and $\alpha + \beta \ge 2$,

 $\zeta \in \mathcal{D}(\mathbb{R})$ with $\zeta(r) = 1$ for |r| < 1.

It is clear that $T \in H^{-1}(\mathbb{R}^3)$, and that $T \in L^1_{loc}(\mathbb{R}^3)$ since $\alpha < 2$.

Also $u \in H^1(\mathbb{R}^3)$ provided $\beta < \frac{1}{2}$ and finally $T.u \notin L^1(|x| < 1)$

since
$$\int_0^1 \left| \sin(\frac{1}{r^{\alpha}}) \right| \frac{1}{r^{\alpha+1}} \frac{1}{r^{\beta}} r^2 dr = \frac{1}{\alpha} \int_1^{\infty} \left| \sin t \right| t^{\frac{\beta-2}{\alpha}} dt = \infty$$

provided $\alpha + \beta \ge 2$.

REFERENCES

[1] H. BREZIS, F. BROWDER

Sur une propriété des espaces de Sobolev, C.R. Acad. Sc. Paris 287 (1978) p.113-115.

[2] H. BREZIS, T. KATO

Remarks on the Schrödinger operator with singular complex potentials, Jour. Math. Pures et Appl., (to appear).

[3] M. GRUN-REHOMME,

Caractérisation du sous-différentiel d'intégrandes convexes dans les espaces de Sobolev, J. Math. Pures et Appl. <u>56</u> (1977) p. 149-156.

[4] H. LEWY, G. STAMPACCHIA

On the Regularity of the Solution of a Variational Inequality, Comm. Pure Appl. Math. 22 (1969) p. 153-188.