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INTRODUCTION
Let £ be a bounded domain of R with smooth boundary Q2 and

outward normal n. The motion of an incompressible perfect fluid is
described by the Euler equation

N
ou;jot + Y ui(0u,fox;) = f; + oc/éx; , 1 <i <N,

= on @x(0,7), (1)
dive =0 on £ x(0,T), 2)
w'n=20 on 082 x (0, T), (3)
U lig = Uy on £, 4)

where f(x, ) and uy(x) are given, while the velocity u(x, t) and the
pressure @(x, t) are to be determined.

The Euler equation has been considered by several authors
including L. Lichtenstein (1925-30), J. Leray (1932-37), M. Wolibner
(1938). T. Kato proved the existence of a global solution for N = 2
[3] and of a local solution for 2 = R3 [4]. Recently, D. Ebin and
J. Marsden [2] have proved the existence of a local solution in the
general case. Their proof relies heavily on techniques of Riemannian
geometry on infinite dimensional manifolds. Qur purpose is to present

* Part of this paper was written while the first author was visiting at SUNY (Stony
Brook) and the second author was visiting at the University of Chicago.
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342 BOURGUIGNON AND BREZIS

a more ‘‘classical” proof of their result by reducing (1)~(4) to an
ordinary differential equation on a closed set of a Banach space;
actually, we get a slightly more general result valid for L? data instead

of L2 data.
The main theorem is the following

THEOREM 1. Let 1 <p < 40, and let s > (Nfp) + 1 be an
integer. Suppose uy € W*P(2; R¥) with divuy, =0on Q2 and uy - n = 0
on 082. Suppose fe C([0, T]; C*+144(2; RY)) with 0 << « < 1X. Then
there exists 0 < Ty < T and a unique function

u e C([0, T,]; We7(Q; RM))

satisfying (1)~(4).
We thank D. Ebin and ]. P. Penot for helpful conversations.

1. NOTATIONS AND PRELIMINARIES

Let W*? be the Sobolev space of real-valued functions in L? such
that all their derivatives up to order s are in L?. In the following we
assume that s > (N/p) + 1 so that by the Sabolev embedding theorem
We2(Q)C CH+(2) with « =s — 1 — NJp. The norm in We? is
denoted by || |, - Let

Drr = {n e Won@Q; RY;
7 is bijective from £ onto 2 and 5~le W*?(Q; RY)}.
Note that y € 257 if and only if y € W*?(Q; R¥) and 4 is a C* diffeo-

morphism with 7(982) C 0.
Let

D27 = {neD*7;| Jacy | = 1 on 2},

where Jac 9 denotes the Jacobian matrix of # and | Jac n | its deter-
minant. Note that » € 2%? if and only if n € WaP(£2;RY), | Jacy | =1
on 2 and 5(2R2) C oQ2.

Let

17,9 = {ue W*?(Q; RY); u - n = 0 on 082}
and
T2%% = {ue T,2*? divu = 0 in Q}.

1 In fact, it is sufficient to assume f € C([0, T}; W*42(Q; RM)
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Recall that if F(x, t) € CY(Q x [0, T]) is such that V" is tangent to the
boundary, i.e., V(x, t) - n(x) = 0 on 82 x [0, T] and if 5(x, t) is the
flow generated by V, i.e. the solution of

(dnfdt)(x, 1) = V(n(x, 1), t),
then

(d]dt) | Jac (s, D)o = (div V)(u(x, 7), 7) | Jac i, 7). (5)
So that in particular if div ¥ = 0 on 2 x [0, T], then
| Jac n(x, t)| = | Jac (x, 0)| on £ x{0,7T]

The following lemmas are well-known (see, e.g., [5]).

Lemma 1 (Neumann problem). Given an fe Wer(Q) (k > 0 an
integer) and a g € Wr1-1/p:2(68) such that

f fax = | gdo,
2 Ve
there exists @ u € W*+22(Q) satisfying

du = f on £,

cu .
ol 4 on &£

In addition,

I grad iy, < CU f ks + 1 € llksr-1/0.0)-

LEMMA 2. Given an fe WEP(Q; RN), there exists a unique
g€ T, 2%? and a & € Wk+L2(Q) such that

=g+ grad w.

We set g = P(f). P is called the projection on divergence free vector
fields; it is a bounded operator in W% »(Q; RN). P is related to the solution
of the Neumann problem in the following way: let & € W L 2(Q) be a
solution of

Ao =divf on Q,

o@

—g;l—zf-n on &S2.

Then
g =Pf=f—grada.
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2. RebucTioN OF THE EULER EQUATION TO AN
ORDINARY DIFFERENTIAL EqQuaTION

Following an idea of V. Arnold [1], we shall work as in [2] with
Lagrange variables. So, we use the configuration » of the fluid (i.e.
the flow generated by ) as unknown. As we shall see, this leads us to
the study of a second-order “ordinary” differential equation.

Assuming (1)-(4) has a solution u, let 5 be the flow of u:

(dn/di)(x, 1) = u(n(x, 1), 2),  n(x 0) = . (6)
Let us rewrite the equation (1)~(4) in terms of ». Equation (4) becomes
(dn/dt)(x, 0) = ug(x). 4)

Equation (3) corresponds to the fact that, for each ¢, 5(-, ¢) is a diffeo-
morphism from @ onto itself and Eq. (2) is equivalent to

[ Jac y(x, £)] =1 on £ x[0,T]. 2)

In order to write down (1) in terms of 7, we eliminate the pressure &
by applying P to (1). Using (2) we get

(0ujot) + P (Z uy(6ujox,)) = Pf.

3

On the other hand, by differentiating (6) with respect to #, we obtain
(8*n/oe*)(x, t) = Z (Ou|0x:)(n(x, 1), 1)(Dn:/0t)(%, t) + (9u/0t)(n(x, 1), 2)
= Z u(n(x, 1), £)(Ou/0x;)(n(x, ), t) + (Bu/Ot)(n(#, £}, ?).
Therefore,

@njor)x, 1) = [ — P) Y uieu/e)]| e, 1), 7) + (B, 1), ). o

If we keep in mind that

u = (on/Ot)(n~", 2),

we can consider (7) as an equation involving only 7.

A crucial observation is that (7) should not be regarded as a partial
differential equation in 5 but rather as an ordinary differential equation
in % (this fact is outlined in [2, p. 147)).
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We first write (7) as a system

& [~ PYY @i o] 1) + B )

or
(d/dt)(n, v) = A(t; 1, ), (8)
where
A(t; m, v) = (v, Bwon™) o + (Pf)(n, 1)) ©®)
and
Bv = (I —P) (z v, —:—:—) (10)

We shall work in the space X = W*?(2; RY) x WeP(Q; RV).
Clearly, A is not everywhere defined on X and not even on an open
subset because of the additional requirement 5 € Z'?. Thus we cannot
apply standard existence theorems for ordinary differential equations,
but shall use the following theorem which is a particular case of a result

of R. Martin [6].

THEOREM 2. Let F be a closed subset of a Banach space X, and let
A(t, 2): [0, T) X F — X be locally Lipschitz in z and continuous in t.
Suppose that for each (t, ) € [0, T X F the following holds

N
1’%1 A dist(z + RA(t, 2), F) = 0.2 an

Then for every 2, € F the equation
dz/dt = A(t, =), 2(0) = z,,
admits a local solution z € CY([0, T,); F).

We shall apply Theorem 2 with F = {(n,v)e X; ne 237 and
von e T,257} which is clearly closed in X.
The main steps in proving Theorem 1 are the following:

(a) Prove that A(t; m, v) is locally Lipschitz in (5, v) from F into
X (see Section 3).

2 Where dist(+, F) denotes the distance to F.
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One has to be rather careful because the mapping 5 — ! is not
locally Lipschitz from 2% into itself (it is only continuous); similarly,
the mapping [, 5] — ¢ o 7 is not locally Lipschitz from 257 x @57
into 257 .

(b) Prove that A(t; 7, v) is tangent to F in the sense of (11) (see
Section 4).

Remark. Incasef = 0, Eq.(7) represents the equation of geodesics
on the manifold 2%* for an appropriate weak Riemannian metric.
Since the metric is weak (i.e. the topology induced by this metric is
weaker than the topology of 2%%), the existence of a Riemannian
connection and of geodesics does not follow at once, but is proved
in [2].

3. 4 1s LocaLLy LipscHITZ
First of all, we observe the following.

LemMa 3. Let f be as in Theorem 1. The mapping (¢, ) — (Ef )(n, ¢)
1s continuous in t and locally Lipschitz inn .

Proof. As t—ty, f(-, ) >f(", ty) in C2; RY), and therefore
Pf(-, 8y — Pf(-, t,) in We?(Q; RY). We conclude by Lemma A.4 that
Bf (7, 1) Bf (n, tz) in Wo»(S; RY).

For a fixed ¢, f(-,f) € C*"1+¢(D) and so Pf(-, t) € C**1++(2), Thus,
by Lemma A.3, 5> (Pf)(n, ) is locally Lipschitz from Z;* into
Wsr(Q; RY). H

Remark. 1t is actually sufficient to assume that fe Ws+L.p(Q, RY)
and use the remark following Lemma A.5 instead of Lemma A.3.
We shall now prove

THEOREM 3. The mapping (n, v) > B(v o n™) oy (B is defined in
(10)) is locally Lipschitz from F into W&P(82; RV).

The proof of Theorem 3 relies on an appropriate factorization of B.
Note that if # € T,2;'?, we have by Lemma 2, Bu = grad & where &
is a solution of
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But

. 2 E ou; ou;
d“’@“" a;:) Zax,(’a:Z):Zja: aZ’

(since divu = 0) and

o ou,;
(S on = T 2 =
7 4 1,0 i

where B(x; u, u) denotes the second fundamental form of 82. More
precisely, let 8(x) be a smooth function on R¥ such that

= {x € RY; §(x) > 0},
= {x € RY; §(x) = 0},

and grad 8 = —n on 9Q. For ue 7,257, we have u. grad § = 0 on
082 and by differentiation we obtain

u. gradfu. grad 8] = 0 on 08,
1.€.,

Zu, 6?0 (u, 22 ) 0 on 8%.

Therefore on 682 we have

Zu, ax Z 8xa, gx =BG w0, (12)

Note that g is a quadratic form in # depending smoothly on x € 892.
We consider first the mapping Q defined by

Oy, v) = (n;(g—z g;j ) o7, B(n; v, 'v)),

where u = v o 7!, which maps F into Z, where
Z =\(n.f,8) e Dr x Wern(@) x Werno(a0); | fax = | gov;‘ldoz.
Q on ]

Next, let S(», £, g) be defined from Z into W*»(Q; RN) by

S(n, f, g = (grad 7)o,
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where 7 1s a solution of

dn = foqyt on £,

o
oyl
w807 on 98.

Therefore we obtain
B@en™)on = (S0)n, v),
and it is sufficient to prove the following propositions:

ProrosITION 1. The mapping (n, v)— Q(n, v) is locally Lipschitz
from F into Z.

ProPoSITION 2.  The mapping (v, f, g)—> S(n, f, ) s locally Lipschitz
from Z into W*P(Q; R¥),

The following lemma will be very useful.

Lemma 4. Let fe WeP(Q2) and y € D3P Then

”(grad(f° ’7—1)) °n — gradf“s-l,p < Cn (g —e ”s.p ”f”s,p y

where e denotes the identity of 2 and C, a constant depending only on
I n ”s,p .

Proof of Lemma 4. We have

grad(f o 571) = *(Jac ) - (grad f)(n™)
and
(grad(f o 7)o 7 = ‘(Jac 7~(n) grad f = (Jac 7)1 - grad f.

We deduce from Lemma A.l that

li(grad(fo 7)) o — grad flle—1,, < Cli(Jac )™ —Ils,, I grad flls—y,»
< Cli(Jac n)~t o (I — Jac nllser.p 1 flls. -
Remark. Lemma 4 holds true for any first-order differential
operator and in a particular grad can be replaced by div or by curl.

Proof of Proposition 1. From Lemma 4, it follows easily that
(9, f) > (grad(f o n~1)) o 4 is locally Lipschitz from 257 x W3»(£2)
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into Ws-1.2(Q; RN). Indeed, by Lemma A.4 (applied with o =5 — 1
and g = p*), we have

i(grad(f o 7)) o m — (grad(f o nz")) © Mg ls1.»
< Cil(grad(f o i) o my o mz* — grad(f o n3Ylsop, ol me s + 1)
g C(’h ’ 7)2) " T M2 Hs,p Hf”ep

where C(7;,7,) is locally bounded. Hence, by Lemma A.l, the
mapping

(n v)»—»Z 6(7)2;;)’1) () a(vja;?'l) ()

is locally Lipschitz.

It remains to check that (4, v) = B(n; v, v) is locally Lipschitz from
F into Ws-1/2.2(9Q). This is clear (by Lemma A.5) since B(x; v, v) is
smooth in x and quadratic in . W

In the proof of Proposition 2, we shall use the following:
LemMma 5. There is a positive constant o such that
aflwils,, <idivelyy, +lcarlwl, , +lw- nloymy 1wl

Jor all w e WeP(2; RN), where curl u denotes the matrix with coefficients
@i == (Ow;/0x;) — (Ow;[0x;).

Proof of Lemma 5. We have
(0w, |0x; Ox;) — BPw;|Ox? = Op;;/0x;

and thus forall 1 < j < N,

J .. O,
gx—j (le ZU) —_ ij = z '_‘3(2—] . (13)
7 B i

Let v = (v;) € C*(£2; R¥) be such that v =non 02 and let U =
> vw; . So that
2

. _a-_ . 8@17 an 820,-
AU = ;V] axj (le w) —;Vj axi + 212-] 6x1/ axi + Zj: (AVQ) w]' .
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Therefore, by a regularity theorem for the Dirichlet problem ((see
[5]), we have

“ U”s P \ C(“ AU“S—" P + “ U ‘59 “3—1/11 1))
< C (” le w ”8—1.73 + ” Curl w ”s—l.zz + “ w ”s—l,p + ” w-n ”s—l/n.p)'
Finally, for all 1 <7 < N,

820, 7
V; = Z ”7 Z £ (ija) Z
31/,
L,
Hence, dw;/on = V;jp0 € W*11/P:2(22) and we have the estimate
0
| = S CQ Uy + 1@ llesp + Il cOri s, 5)-

s—1-1/9,p

On the other hand, by (13), dw; € W*22(2). Moreover,

7
V,' w; + Z ViPij

w,- + Y vy

l grad o, ocy.p < C (11 dwilop + | 5 Buw,

S—I—l/m,p)
so that by (13) and the previous estimate we get
1R7] “s,p < C(H divaw ”s-l,p -+l curl @ fls—1,5 + % lle—r,p + lew-n ”5—1/29.1))‘ a

Remark. For any norm ||| - ||| on WeLP which is weaker than
I llg—1,p » there is a constant o > Q such that

alf wll,, <N dively, +loutdwlloy, +w-nlloym, + ol

since the injection W#? C W*-1:? is compact.

Proof of Proposition 2. We have to estimate
X =||(grad m;) o 9, — (grad my) © 7z lls,»
where
dm; = fiom; on @,  (Puilom) =gion; on 8R, i=1,2.
By Lemma A.4 we know that

X < C(py)ll(grad m) o my 0 m5* — grad my [f; .
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We shall use the Remark following Lemma 5 to estimate
li(grad my) o my 0 mp* — grad ms s, -

Let
X, = || div[(grad m) o n; o 95 — grad mflls1,,

X, = || curlf(grad m) o m; o m;* — grad olllsi.p

X; = [[[(grad my) o 9y © "72_1 ~— grad 7] * 7 lls1/p,p
X, = |l(grad m;) o my o 95" — grad 7y i,

where we choose

fiull = sup || u-dv; Lo CHBRY), £ =0 on 8@ and | L, < 1
Q

We have
div grad my = Amy = fr o9t
and

div{(grad m) o my o ;"] = [div(grad m)} o my o 75* + R

where, by the Remark following Lemma 4 (used with f = (grad 7y) © 9
and » = 7, © n3"), we have

I Rllse1.p < Clmsm) I my — e lls,n [l grad my lls 5
< C'ysm)llm — malls p (LA 07 limain + 11810 07 Foetin,0)
< C'(pe s )l — 2 lsp (1L f1 e, + 181 lsm/0,0)-
Hence
X, < Cn ) llm — mellsn (1fi emrn + 181 lemr/0.0)
+Fllfrongt — oot lsern
and thus

Xl < Cm("h ’ ’72)[” M Mg Hs,z) (”fl ns—-l.z) + ng ns—l ":0.72) + '?fl "—fz “S—l,ﬂ]‘

Similarly, since curl grad = 0, we get

X, < Clny,ma) g — m2 oo (Hfl fem1.0 + 1181 flic1/mn)-



352 BOURGUIGNON AND BREZIS
Next letting 5 = %, o %3 we have

Om () — Om2

X, <lgradm) o (2 = nomoarms + | o2 () = 53

s~1/p,p

< Clpy s )l — N oo (1 fi s + I &2 He-17p,0) + 1 81 — &2 s-2/p.0)-

Finally we estimate X,; let { € C¥2; R¥) be such that { = 0 on 2%.
Let

K@) = | [(gradm) ey — grad m] - { v

= | lgradm) - (Lo — gradm, - ] d.

Let w and w, be solutions of the equations

Ao =divl on 2 do, =div({ont) on £
9 0 on 20 %n 0  on o
on on

We can always assume that

lwles < CliLlges
I w, — w “s.p <C Il {o 7t — C“s—l.p < C("ll s "72) 9 ~— 7 “s.p I C”C"

by Lemma A.3. Thus

lw,on—ewll,_,, Slo,on—weyl , ,+loweyg—wl,,,
< Cllo, —wll_,y, +lelulnr —ell,)
by Lemma A.3 and A.4. Hence

o, on—wll,_, , < Clpy,n)llny —nyll 1 llce -
But

K(l) = fn [y - dw, — my - Aw] dx
= [ @m0, —dmy )i — [ (o o —gaongt @) do
= [ Waomy o, — (hons?) - o] do

— [ Werom?) o, —(gaong?) - ol do.
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The first term can be estimated by

(1f; — falpogy @ llng 1A Ipg e, en —wllog
while the second term can be estimated by

18y — 82l @y liraay T 1182 lm ol @, — @linee

R AP Pk rl PPN PP
So finally
K@) < Clyy s m) [ ligs M1 fy = follzmiay + 1y — g Ml 113 lpaggy

+ ”gl —_gg ”Lm(ag) + H L/ P ”s,p (Hgg HL"J(gQ) + Hgg ,EL“,)],

and

X, KO o

=P

4. 4 15 “TaNGeNT” TO THE CLOSED SET F

Let u and y be given so that u € W*?(Q2; RY) with divu = 0 on Q
and % - n = 0 on 92 and y € W*P(Q; RV) satisfying

div('y——Zui%):O on O, (y~2ui—g‘_—)'n:0 on 3Q.

In order to prove that A is tangent to F, we shall exhibit a curve
n € CI; Z;;7) (I = [0, ty], ty small enough) such that 1y = e, 7, = u,
ijp = y. This curve will be a “good approximation” in 257 of

e + tu + (t3/2)y.

THEOREM 4. Let u € D5 and y € WoP(2; RN) with s > (N[p) + 1
such that

div(y-Zu,-—g;'—):O on 9, (}’—Zuz‘a%u‘_‘)'”:() on 08,

i
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Then there exists a curve v, satisfying ne CY(I; 27)

Mo == & (14)
o =t (15)
il = . (16)
Remark. Conversely, if 5 is a curve satisfying (14), then u =

div(y—;ui—%‘:)=0 on £ and (y——-;u,-—aag:)-nzo on Q.

The proofs of Theorem 4 and its Remark are based on the following
lemma.

LEmMA 6. Let O/ and % be Banach spaces, and let ¢ be a C* mapping
defined on a neighborhood of 0 in (1 with values into %, such that p(0) = 0
and Dyp is a split surjection (i.e. Dyp is onto % and ker Dyp has a
topological complement in (7).

Given U, V in (X, there exists a curve { € C¥I; () such that

@(l) =0 for tel, {, =0, (17)
=10, (18)
Lh=7, (19)

if and only if U and V satisfy

Dyp - U =0, (20)
Dyp - V 4 D?p(U, U) = 0. (21)

Proof of Lemma 6. 1t is easy to check that U = {, and V = {
satisfy necessarily (20) and (21) by differentiating (17). The converse
relies on the implicit function theorem. Let € = ker Dyp, and let P
be a continuous projection from ¢Z onto €. Define : (% — £ X € by
Y(u) = (¢(u), Pu), so that Dy = Dyp X P is an isomorphism from (¥
onto # x €. Therefore, by the implicit function theorem, ¢ is a C?
isomorphism from a neighborhood of 0 in 7 onto a neighborhood of
0in & x ¥. For ¢ small enough, consider

Ly = ¢Y0, tU -+ (#3/2) PV).
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Therefore, ¢({) =0 and P{, = tU + (#*/2) PV. Consequently,
Dyp - ¢y = 0 and P{, = U, which implies {, = U. Also,

Dyp - zn + Do?p(U, U) = 0
and P{, = PV. Hence, Dyp({, — V) = 0 and P({, — V) = 0, which
implies {, = V. I
Proof of Theorem 4. Let (7 = W*P(2; RV) and let

B = (f, g) € W15(Q) x WV r2(2Q); fg Fdx — fa X dag.

We consider the mapping ¢ defined on & by ¢(#) = (@(%), p.(u))
where

wa) = | Jacle + )] — i f. 1 Tacle + )l dv — g5 [ 8o (e +w)do,
pa) = —3 o (¢ + w)an

(recall that 8 is smooth and 92 = {x; 8(x) = 0}). Observe that ¢ takes
its values in % and that ¢ is C® since | Jac | is a polynomial in the first
derivatives (we suppose s > (N/p) + 1; cf. Lemma A.1) and since § is
C*. For u small enough, ¢(z) = 0 implies that (e -+ u) € 2%7. Indeed,
n = (e 4 u) is a C! diffeomorphism and 4(8£2) C 0Q2. Therefore, n € Z%»
and since | Jacy | = C'is constant on £, we have Vol 2 = Vol 5(Q) =
JalJacy { dx = C Vol 2; so that C = 1 and » € ZP. For v e (7, we
have the expansion

. 2 . od 6vi aﬂj
| Jace + t0)] = 1 +tdive + 2 (I dive f — ig=1 Ox; Ox; ) *

since for any matrix M = (m;;) we know that
e2 N
I+ eM| =1 +etrM+—2—(|trM]2— y m,.,m,.f) d

1,j=1

Hence,
Dypy - v =divgv—-VoIT!—?J.ndivvdx—}—v;ll—Qfmv-nda:divv;

580[15/4-2
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and Dyp, v =v-n Consequently, Dyp v = (dive,v-n) is a
split surjection onto 4. Also

Pulev) + pi(—ev) T 2 = dv; 0v;

& ——[le’v[—Z‘a—-xj—'az

Dypy(2, @) = lim
7 i,j=1

_ 1 . 2 il 91),- aﬂj
voral, (ldver — ¥ ) as

1 N2

- VOl 2 a9 ;521 3.761- 3x,~ Vi da,

and

Dz‘P(””)‘—g —9‘28—-7)1)—-——}9("1)7))
0 2\Y S axiaxj (A » @y .

We apply now Lemma 6 with U = u and V' = . Conditions (20) and
(21) are satisfied since

Dy u=(divu,u-n) =0,
and by (12),

N

Dopy "y + D?py(u, u) = divy — Y

£,7=1

Ox, %, T VOIQL 2 T o

1 N o 52
T Vol 2 Jsq 52, Bxs 0w do =0,

N 23
Dypy -y + DPpo(u,u) =y -1 — Z W”iui=0~ |

i,7=1

THEOREM 5. A is “tangent” to F in the following sense:

tig LD T AERVD) o o at @ o)er, @2

where dist(+, F) denotes the distance to the closed set F in the space
X = Wes2(Q; RN) x We2(Q; RN).

Proof of Theorem 5. We recall that

Aty g, u) = (0, B on™) on 4 P(f) o )
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(where f, is the given field of external forces),
F ={nu)ecX;ne 9:"’ anduonle Te@;-,p}_

We tart by proving (22) for the case n = ¢. We observe then that
e T, 2" andy B(u) + P( f,) meets the requirements of Theorem 4,
ie,

div(y—Zui—gg:)=0 on 2 and (y—-gui—gi—)'n:o on Q2

since y — Z u(Oufox;) = P(f — Z u,; (duldx;)) by the definition of B.

From Theorem 4 we know that there exists a curve n € C¥I; Z%7)
with initial data (e, u, y). Since (9, 7;) € F, we have

(1/h) dist((e, w) + hA(L; e, u), F] < (1/k) dist{(e, #) + AA(2; e, w), (mn , 98))-

By construction of 7, the right-hand side tends to 0 as 2 — 0, which
proves Theorem 5 at 7 = e. For the general case, we just have to
notice that

At g, u) = A(t; e, u ey o,
that n(F) = F for y € Z37, and that the map v~ © ¢ 7 is continuous

(cf. Lemma A.4). Therefore, we can apply the result at e, completing
the proof of Theorem 5. W

APPENDIX: Propuct aND COMPOSITION OF
FUNCTIONS IN SOBOLEV SPACES

1. Probuct oF Two FuNcTIONS
Let 2 C R” be a bounded domain with smooth boundary.

LEmMA AL, Let a1 be an integer, and let 1 < p < + o,

1 <¢< +oo.
If u e W*P(Q) and v e WoYQ), then u, v € W*"(Q), where r is defined

by
Vr = (1/p) + (1/g) — /N  when max{p, q} < Nla, 1
r arbitrary < min{p, q} when  max{p, ¢} = Njx 2)
r=1fp=q=N=a=1),

r = min{p, ¢} when  max{p, g} > N/ 3)
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In addition, ||u - v [lyer < Cll#|lyas || © lyaa, where C depends only
on o, p, q, v, and £.

Proof. By induction on «, the proof is easy for « = 1. In order to
show that u - v € W*"(Q), we have to prove that u ‘ v e L"(2) (which
is straightforward) and that Du v + u - Dve We17(Q). By sym-
metry , it is sufficient to check that Du-ve Web7(Q). But
bDu € Wo=L2(Q) and v € W*9(Q) C We—1.94(Q), where ¢* is determined

v :
1 1

i N when g < N,
1 Jarbitrarily small with
7 1 < ! when ¢ =N,
g* " q '
0 when ¢ > N.

We have now to distinguish three cases:

Case 1. max{p, ¢} < N/x and thus max{p, ¢*} < N/(a — 1). By
the induction assumption, we know that Du - v € W 15(£) where

Ifs = (1/p) + (1/g*) — (« — D)/N = (1/p) + (1/g) — o/N.

Case 2. max{p, ¢} = N|a. Either p <q= Nfx, so that ¢* =
N/(a — 1). Thus, max{p, ¢*} = N/(« — 1) and by the induction
assumption we know that Du - v € W*=15() for any s < min{p, ¢*} =
p = min{p, g}. Or ¢ < p = N, so that max{p, ¢*} < N/(« — 1)and
by the induction assumption Du - v € We—1:5() with

Vs = (1/p) + (1/g*) — (x — )/N = (1/p) + (1/g) — N = 1/g.

Hence Du - v € W15(Q) with s = min{p, ¢}.
Case 3. max{p, g} > Nja. Either ¢ > Nju« so that

max{p, ¢*} > Nf{e — 1)

and by the induction assumption Du-ve We1¥(8) with s =
min{ p, g*} > min{p, ¢}. Or p > Nja and ¢ < N/a; by the induction
assumption Du - v € W*=L%(Q), for s as follows: when

max{p, ¢*} < N/(x — 1)
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we have 1/s = (1/p) + (1/g*) — (« — 1)/N and 1fs < l/g. There-
fore, Du - v e W*"1%(Q) with s = min{p, ¢}. When

max{p, ¢*} > Nj(x — 1),

we have Du - v € We-15(Q) for any s << min{p, ¢*} and in particular
we can choose s = min{p, ¢}. W

2. ComposiTioN oF Two MAPPINGS
Let £’ C RM be a bounded domain with smooth boundary.

LeMMA A.2. Let a > | be an integer, and let 1 < p < + 0 with
a > Nfp.Let F € C($2"), and let G € W*-2(Q; RM) such that G(Q2) C Q'.
Then F o G € W*P(Q2) and

NFoGliyan < CIF (1 GliGes + 1),
where C depends only on «, p, 2, and Q'

Proof. By induction on a, the proof is easy for « = 1. In order to
show that F o G € W=*?(Q), we have to check that F o G € L?(Q) (which
is obvious) and that (DF - G) - DG € W=*"17(Q).

Since a« — 1 > N/p*, we know by the induction assumption that
DF o G € Wo1.»*(2) with
| DF o G ljyo-1.00 < CUF fica (| G ligratan -+ 1)

Wu'*l-l'*

But DG e W*17(2) and from Lemma A.l (Case 3) we get
(DF o Gy - DG € W*=t7(£2) with the corresponding estimate. i}

Remark. A slightly sharper version of Lemma A.2 can be found
in [7].

Lemma A3, Let o =1 be an integer and let 1 < p < -+o0 with
a > NJp. Let F e C~*{(Q"), and let G € W=p(Q; RM) and

He WY Q; RM)
such that G(2) C Q', H(Q)C Q'. Then
|FoG —FoHips
S ClFllganll G — Hllpaoo (1 G lpar + 1 Hllgaw + 1),
where C depends only on o, p, £2 and £2'.
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Proof. By induction on «, the proof is easy for « = 1. In order to
show that (4) holds, we have to check that

|[FoeG—FoHl, < ClFllallG— H s
(which is obvious) and that
(DF « G) - DG — (DF < H) - DH |, .,
can be bounded by the right-hand side in (4). But

(DF « G)- DG — (DF o H) - DH
= (DF s G — DF o H) - DG + (DF o H) - (DG — DH).

The first term in the right-hand side is bounded in W*12(Q) by
CliFligastll G — Hllyamron (| G lyamas 11 H liasoe 4+ D | Gl

(using the induction assumption and Lemma A.1 with g = p*), while
the second term in the right-hand side is bounded in We=1:? by

Cll G — H flyan | Fllca (F H laa0e + 1)
(using Lemmas A.1 and A.2). W

The following result differs essentially from Lemma A.2 by the fact
that we assume only that F e W>? (instead of C*), but G is here a
diffeomorphism.

LemMma Ad. Let o > 2 be an integer, and let 1 < p <qg<< +
such that o« > (Nq) 4+ 1. Let Fe W*?(Q), and let G € 2*4Q2) (i.e.
G e Wo¢Q; RN) and G is a C' diffeomorphism from Q2 onto Q). Then
FoGeW?() and

1

1F o Gliyas < CllFlyes T Tac g (

Gllgpac + 1)

where C depends only on o, p, q and 8.

Proof. By induction on «, we consider first the case where « = 2.
It is clear that F o G € LP(£2) and

1

”F°G”Ln gm

HE ], -
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Also, D(F o G) = (DF o G) - DG belongs to W'?({2) by Lemma A.l
since DG € W+9(Q) (¢ > N) and DF o G € Wt?({) with

1

| DF o Gllpam < f [ Jac G U7

(I DF{i» + [ D*F |0 | DG |l )-

In the general case, we have to check that Fo G € L#({2) and that
(DF - G) - DG € W*12(2). By the induction assumption, we know
that DF o G € W>"17(Q) (since « — 1 > (N/g*) + 1) and

1

| DF 2 Gllyans < CUF lyacs ey Tag g O G liraines + 1)

From Lemma A.l1, we conclude that (DF - G)- DG belongs to
We=1.p(2) with the corresponding estimate. [l

Levma A.5. Let « == 2 be an integer, and let 1| < p < g < o0 be
such that p < +oo and a > (N/q) + 1. Let F e W*?(£2); then the
mapping G — F o G is continuous from Z*%8) into WP(£2).

Proof. Given § > 0, there exists F e C*(£2) such that
IF —Flyan < 8.
We have
FoG—FoH=(FoG—FoG)+ (FoG—FoH)4 (FoH —Fo H).

The first and third terms in the right-hand side can be bounded in
Wer() (using Lemma A.4) by

1 . 1 .
B i TTac G U Gl + 1) + O ey (1H e + 1),

while the second term can be bounded in W) (and a fortiori in
WeP(Q)), using Lemma A.3, by

ClF{eans | G — Hllyaa (| Gllyae + 1| Hlpouw +1). W

Remark. More generally, one can show, under the assumptions of
Lemma A.5, that if F e Wo+8P((2), then the mapping G+ F o G is of
class C? from 2%4£) into W*P(Q)[Z+%(Q) is provided with an
appropriate manifold structure].
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3. INTEGRATION OF VECTOR FIELDS

Let F(x, ¢): 2 x [0, TT— RY be a vector field tangent to 62 on o2
(i.e. F(x, t) - n(x) = 0 for x € 82 and ¢ € [0, TY).

LemMMA A.6. AssumeF e C([0, T]; W=*2(2; RN)) with
a > (Njp) +1 and 1 <p < +o0.
Then the differential equation
(du/de)(x, t) = F(u(x, t), t)
u(x,0) =«
has a solution u € CY([0, T'1; 2%2(£2)).

Remark. Lemma A.6 is not used in our paper, but it answers a
question raised by Ebin and Marsden [2] who proved the same result
for the case where p = 2 and o > (N/2) + 2.

Proof. When « = 2 (so that p > N), we have
Fe (0, T}; C1AZ; RY)),

where A = 1 — N/p. In this case, it is well-known that there exists a
solution ue CY[0, 77; C1X2; RY)) and in addition (d/dt) Du =
DF(u, t) - Du. On the other hand, x — u(x, t) is a diffeomorphism for
all [0, T since

(d/dt) | Jac w(x, t)]s, = div F(u(x, 7), 7) | Jac u(x, 7)| = —C| Jac u(x, 7)|

and thus | Jac u(x, )| > e~¢%. Hence, DF(u(x, t), t) € W?(2; RN x RN)
for all ¢t [0, T']; more precisely, the mapping t > DF(u(x, t), t) is
continuous from [0, 7] into W?(£2; RV X RN) (as in the proof of
Lemma A.5). For a fixed u e CY(£2, 2), the operator v > DF(u, t) * v is
bounded from W?(22; R¥ X RY) into itself (by Lemma A.1). There-
fore, the linear differential equation dv/dt = DF(u, t) - v (considered
in the Banach space W1?(2; R¥ x RV)) has a solution

ve CY[0, T}; Wh»(2, RN x RV)).
Consequently, Du € CY([0, T]; Wb»(£2; R¥ X RN)) and

u e CY([0, T]; W22(2; RM)).
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In the general case, the proof is by induction on «. Since
F e C([0, T]; W*22%Q; RM)),

we know from the induction assumption that u € CY([0, T']; 2*"19£2)),
where ¢ = p* for p << N and ¢ is any finite number for p > N.

Lemma A.4 shows that DF(u,t) e W>1P(2; RY x R¥) for all
t € {0, T']; more precisely, it follows from Lemma A.5 that the mapping
t — DF(u(x, t), t) is continuous from [0, 7] into We=12(Q2; RY X RN).
Therefore, the linear differential equation

dvjdt = DF(u, t) v

has a solution ve CY[0, T]; W12(Q2; RV X RV)). Consequently,
Du e CY[0, T]; W12(Q2; RN X RN)) and u € CY([0, T]; Wr(Q; RY)).
n
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