Remarks on the Euler Equation*

J. P. BOURGUIGNON

Centre de Mathématiques, École Polytechnique, 17 Rue Descartes, Paris 5e

AND

H. Brezis

Département de Mathématiques, Université Paris VI, 4 Place Jussieu, Paris 5^e Received May 30, 1973

INTRODUCTION

Let Ω be a bounded domain of \mathbb{R}^{N} with smooth boundary $\partial \Omega$ and outward normal *n*. The motion of an incompressible perfect fluid is described by the Euler equation

$$\partial u_i/\partial t + \sum_{j=1}^N u_j(\partial u_i/\partial x_j) = f_i + \partial \bar{\omega}/\partial x_i, \quad 1 \leq i \leq N,$$

on $\Omega \times (0, T),$ (1)

div u = 0 on $\Omega \times (0, T)$, (2)

 $u \cdot n = 0$ on $\partial \Omega \times (0, T)$, (3)

$$\boldsymbol{u}|_{t=0} = \boldsymbol{u}_0 \quad \text{on} \quad \boldsymbol{\Omega}, \tag{4}$$

where f(x, t) and $u_0(x)$ are given, while the velocity u(x, t) and the pressure $\tilde{\omega}(x, t)$ are to be determined.

The Euler equation has been considered by several authors including L. Lichtenstein (1925-30), J. Leray (1932-37), M. Wolibner (1938). T. Kato proved the existence of a global solution for N = 2[3] and of a local solution for $\Omega = \mathbb{R}^3$ [4]. Recently, D. Ebin and J. Marsden [2] have proved the existence of a local solution in the general case. Their proof relies heavily on techniques of Riemannian geometry on infinite dimensional manifolds. Our purpose is to present

^{*} Part of this paper was written while the first author was visiting at SUNY (Stony Brook) and the second author was visiting at the University of Chicago.

a more "classical" proof of their result by reducing (1)-(4) to an ordinary differential equation on a closed set of a Banach space; actually, we get a slightly more general result valid for L^p data instead of L^2 data.

The main theorem is the following

THEOREM 1. Let 1 , and let <math>s > (N/p) + 1 be an integer. Suppose $u_0 \in W^{s,p}(\Omega; \mathbb{R}^N)$ with div $u_0 = 0$ on Ω and $u_0 \cdot n = 0$ on $\partial\Omega$. Suppose $f \in C([0, T]; C^{s+1+\alpha}(\Omega; \mathbb{R}^N))$ with $0 < \alpha < 1^1$. Then there exists $0 < T_0 \leq T$ and a unique function

$$u \in C([0, T_0]; W^{s, p}(\Omega; \mathbb{R}^N))$$

satisfying (1)-(4).

We thank D. Ebin and J. P. Penot for helpful conversations.

1. NOTATIONS AND PRELIMINARIES

Let $W^{s,p}$ be the Sobolev space of real-valued functions in L^p such that all their derivatives up to order *s* are in L^p . In the following we assume that s > (N/p) + 1 so that by the Sobolev embedding theorem $W^{s,p}(\Omega) \subset C^{1+\alpha}(\overline{\Omega})$ with $\alpha = s - 1 - N/p$. The norm in $W^{s,p}$ is denoted by $\| \cdot \|_{s,p}$. Let

$$\mathscr{D}^{s,p} = \{\eta \in W^{s,p}(\Omega; \mathbb{R}^N);$$

 η is bijective from $\overline{\Omega}$ onto $\overline{\Omega}$ and $\eta^{-1} \in W^{s, p}(\Omega; \mathbb{R}^N)$.

Note that $\eta \in \mathscr{D}^{s,p}$ if and only if $\eta \in W^{s,p}(\Omega; \mathbb{R}^N)$ and η is a C^1 diffeomorphism with $\eta(\partial \Omega) \subset \partial \Omega$.

Let

$$\mathscr{D}^{s,p}_{\mu} = \{\eta \in \mathscr{D}^{s,p}; | \text{Jac } \eta | = 1 \text{ on } \Omega\},\$$

where Jac η denotes the Jacobian matrix of η and | Jac $\eta |$ its determinant. Note that $\eta \in \mathcal{D}^{s,p}_{\mu}$ if and only if $\eta \in W^{s,p}(\Omega; \mathbb{R}^N)$, | Jac $\eta | = 1$ on Ω and $\eta(\partial \Omega) \subset \partial \Omega$.

Let

$$T_{a}\mathscr{D}^{s,p} = \{ u \in W^{s,p}(\Omega; \mathbb{R}^{N}); u \cdot n = 0 \text{ on } \partial \Omega \}$$

and

$$T_{e}\mathcal{D}_{u}^{s,p} = \{ u \in T_{e}\mathcal{D}^{s,p}; \text{ div } u = 0 \text{ in } \Omega \}.$$

¹ In fact, it is sufficient to assume $f \in C([0, T]; W^{s+1,p}(\Omega; \mathbb{R}^N))$

Recall that if $V(x, t) \in C^1(\overline{\Omega} \times [0, T])$ is such that V is tangent to the boundary, i.e., $V(x, t) \cdot n(x) = 0$ on $\partial \Omega \times [0, T]$ and if $\eta(x, t)$ is the flow generated by V, i.e. the solution of

$$(d\eta/dt)(x, t) = V(\eta(x, t), t),$$

then

$$(d/dt) \mid \operatorname{Jac} \eta(x, t) \mid_{t=\tau} = (\operatorname{div} V)(\eta(x, \tau), \tau) \mid \operatorname{Jac} \eta(x, \tau) \mid.$$
 (5)

So that in particular if div V = 0 on $\Omega \times [0, T]$, then

$$|\operatorname{Jac} \eta(x, t)| = |\operatorname{Jac} \eta(x, 0)|$$
 on $\Omega \times [0, T]$.

The following lemmas are well-known (see, e.g., [5]).

LEMMA 1 (Neumann problem). Given an $f \in W^{k,p}(\Omega)$ $(k \ge 0 \text{ an integer})$ and $a \in W^{k+1-1/p,p}(\partial \Omega)$ such that

$$\int_{\Omega} f\,dx = \int_{\partial\Omega} g\,d\sigma,$$

there exists a $u \in W^{k+2,p}(\Omega)$ satisfying

$$\Delta u = f$$
 on Ω ,
 $\frac{\partial u}{\partial n} = g$ on $\partial \Omega$.

In addition,

$$\| \operatorname{grad} u \|_{k+1,p} \leqslant C(\|f\|_{k,p} + \|g\|_{k+1-1/p,p}).$$

LEMMA 2. Given an $f \in W^{k,p}(\Omega; \mathbb{R}^N)$, there exists a unique $g \in T_e \mathscr{D}^{k,p}_{\mu}$ and $a \ \omega \in W^{k+1,p}(\Omega)$ such that

 $f = g + \operatorname{grad} \tilde{\omega}.$

We set g = P(f). P is called the projection on divergence free vector fields; it is a bounded operator in $W^{k,p}(\Omega; \mathbb{R}^N)$. P is related to the solution of the Neumann problem in the following way: let $\bar{\omega} \in W^{k+1,p}(\Omega)$ be a solution of

$$\begin{cases} \Delta \bar{\omega} = \operatorname{div} f & on \ \Omega, \\ \frac{\partial \bar{\omega}}{\partial n} = f \cdot n & on \ \partial \Omega. \end{cases}$$

Then

$$g = Pf = f - \operatorname{grad} \tilde{\omega}.$$

BOURGUIGNON AND BREZIS

2. REDUCTION OF THE EULER EQUATION TO AN ORDINARY DIFFERENTIAL EQUATION

Following an idea of V. Arnold [1], we shall work as in [2] with Lagrange variables. So, we use the configuration η of the fluid (i.e. the flow generated by u) as unknown. As we shall see, this leads us to the study of a second-order "ordinary" differential equation.

Assuming (1)-(4) has a solution u, let η be the flow of u:

$$(d\eta/dt)(x, t) = u(\eta(x, t), t), \quad \eta(x, 0) = x.$$
 (6)

Let us rewrite the equation (1)-(4) in terms of η . Equation (4) becomes

$$(d\eta/dt)(x, 0) = u_0(x).$$
 (4')

Equation (3) corresponds to the fact that, for each t, $\eta(\cdot, t)$ is a diffeomorphism from $\overline{\Omega}$ onto itself and Eq. (2) is equivalent to

$$|\operatorname{Jac} \eta(x,t)| = 1$$
 on $\Omega \times [0,T]$. (2')

In order to write down (1) in terms of η , we eliminate the pressure $\bar{\omega}$ by applying P to (1). Using (2) we get

$$(\partial u/\partial t) + P\left(\sum_{j} u_{j}(\partial u/\partial x_{j})\right) = Pf.$$

On the other hand, by differentiating (6) with respect to t, we obtain

$$(\partial^2 \eta / \partial t^2)(x, t) = \sum_i (\partial u / \partial x_i)(\eta(x, t), t)(\partial \eta_i / \partial t)(x, t) + (\partial u / \partial t)(\eta(x, t), t)$$

= $\sum_i u_i(\eta(x, t), t)(\partial u / \partial x_i)(\eta(x, t), t) + (\partial u / \partial t)(\eta(x, t), t).$

Therefore,

$$(\partial^2 \eta / \partial t^2)(x, t) = \left[(I - P) \sum_i u_i (\partial u / \partial x_i) \right] (\eta(x, t), t) + (Pf)(\eta(x, t), t).$$
(7)

If we keep in mind that

$$u = (\partial \eta / \partial t)(\eta^{-1}, t),$$

we can consider (7) as an equation involving only η .

A crucial observation is that (7) should not be regarded as a partial differential equation in η but rather as an ordinary differential equation in η (this fact is outlined in [2, p. 147]).

We first write (7) as a system

$$\int rac{d\eta}{dt} = v$$

 $\int rac{dv}{dt} = \left[(I-P) \sum_{i} (v \circ \eta^{-1})_i rac{\partial}{\partial x_i} (v \circ \eta^{-1}) \right] (\eta, t) + (Pf)(\eta, t)$

or

$$(d/dt)(\eta, v) = A(t; \eta, v), \qquad (8)$$

where

$$A(t; \eta, v) = (v, B(v \circ \eta^{-1}) \circ \eta + (Pf)(\eta, t))$$
(9)

and

$$Bv = (I - P)\left(\sum_{i} v_{i} \frac{\partial v}{\partial x_{i}}\right).$$
(10)

We shall work in the space $X = W^{s,p}(\Omega; \mathbb{R}^N) \times W^{s,p}(\Omega; \mathbb{R}^N)$. Clearly, A is not everywhere defined on X and not even on an open subset because of the additional requirement $\eta \in \mathcal{D}^{s,p}_{\mu}$. Thus we cannot apply standard existence theorems for ordinary differential equations, but shall use the following theorem which is a particular case of a result of R. Martin [6].

THEOREM 2. Let F be a closed subset of a Banach space X, and let A(t, z): $[0, T) \times F \rightarrow X$ be locally Lipschitz in z and continuous in t. Suppose that for each $(t, z) \in [0, T] \times F$ the following holds

$$\lim_{h \downarrow 0} \frac{1}{h} \operatorname{dist}(z + hA(t, z), F) = 0.^{2}$$
(11)

Then for every $z_0 \in F$ the equation

$$dz/dt = A(t, z), \qquad z(0) = z_0,$$

admits a local solution $z \in C^1([0, T_0]; F)$.

We shall apply Theorem 2 with $F = \{(\eta, v) \in X; \eta \in \mathcal{D}^{s,p}_{\mu} \text{ and } v \circ \eta^{-1} \in T_e \mathcal{D}^{s,p}_{\mu}\}$ which is clearly closed in X.

The main steps in proving Theorem 1 are the following:

(a) Prove that $A(t; \eta, v)$ is locally Lipschitz in (η, v) from F into X (see Section 3).

² Where dist(\cdot, F) denotes the distance to F.

One has to be rather careful because the mapping $\eta \mapsto \eta^{-1}$ is not locally Lipschitz from $\mathscr{D}^{s,p}_{\mu}$ into itself (it is only continuous); similarly, the mapping $[\psi, \eta] \mapsto \psi \circ \eta$ is not locally Lipschitz from $\mathscr{D}^{s,p}_{\mu} \times \mathscr{D}^{s,p}_{\mu}$ into $\mathscr{D}^{s,p}_{\mu}$.

(b) Prove that $A(t; \eta, v)$ is tangent to F in the sense of (11) (see Section 4).

Remark. In case f = 0, Eq. (7) represents the equation of geodesics on the manifold $\mathscr{D}_{\mu}^{s,2}$ for an appropriate weak Riemannian metric. Since the metric is weak (i.e. the topology induced by this metric is weaker than the topology of $\mathscr{D}_{\mu}^{s,2}$), the existence of a Riemannian connection and of geodesics does not follow at once, but is proved in [2].

3. A is Locally Lipschitz

First of all, we observe the following.

LEMMA 3. Let f be as in Theorem 1. The mapping $(t, \eta) \mapsto (Pf)(\eta, t)$ is continuous in t and locally Lipschitz in η .

Proof. As $t \to t_0$, $f(\cdot, t) \to f(\cdot, t_0)$ in $C^s(\overline{\Omega}; \mathbb{R}^N)$, and therefore $Pf(\cdot, t) \to Pf(\cdot, t_0)$ in $W^{s,p}(\Omega; \mathbb{R}^N)$. We conclude by Lemma A.4 that $Pf(\eta, t) \to Pf(\eta, t_0)$ in $W^{s,p}(\Omega; \mathbb{R}^N)$.

For a fixed $t, f(\cdot, t) \in C^{s+1+\alpha}(\overline{\Omega})$ and so $Pf(\cdot, t) \in C^{s+1+\alpha}(\overline{\Omega})$. Thus, by Lemma A.3, $\eta \mapsto (Pf)(\eta, t)$ is locally Lipschitz from $\mathscr{D}^{s,p}_{\mu}$ into $W^{s,p}(\Omega; \mathbb{R}^N)$.

Remark. It is actually sufficient to assume that $f \in W^{s+1,p}(\Omega, \mathbb{R}^N)$ and use the remark following Lemma A.5 instead of Lemma A.3.

We shall now prove

THEOREM 3. The mapping $(\eta, v) \mapsto B(v \circ \eta^{-1}) \circ \eta$ (B is defined in (10)) is locally Lipschitz from F into $W^{s,p}(\Omega; \mathbb{R}^N)$.

The proof of Theorem 3 relies on an appropriate factorization of B. Note that if $u \in T_e \mathscr{D}^{s,p}_{\mu}$, we have by Lemma 2, $Bu = \operatorname{grad} \bar{\omega}$ where $\bar{\omega}$ is a solution of

$$\Delta \bar{\omega} = \operatorname{div} \left(\sum_{i} u_{i} \frac{\partial u}{\partial x_{i}} \right) \quad \text{on} \quad \Omega,$$
$$\frac{\partial \bar{\omega}}{\partial n} = \left(\sum_{i} u_{i} \frac{\partial u}{\partial x_{i}} \right) \cdot n \quad \text{on} \quad \partial \Omega.$$

But

$$\operatorname{div}\left(\sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right) = \sum_{i,j} \frac{\partial}{\partial x_{j}} \left(u_{i} \frac{\partial u_{j}}{\partial x_{i}}\right) = \sum_{i,j} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial u_{j}}{\partial x_{i}}$$

(since div u = 0) and

$$\left(\sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right) \cdot n = \sum_{i,j} u_{i} \frac{\partial u_{j}}{\partial x_{i}} n_{j} = \beta(\cdot; u, u)$$

where $\beta(x; u, u)$ denotes the second fundamental form of $\partial\Omega$. More precisely, let $\delta(x)$ be a smooth function on \mathbb{R}^N such that

$$\Omega = \{ x \in \mathbb{R}^N; \, \delta(x) > 0 \},\$$
$$\partial \Omega = \{ x \in \mathbb{R}^N; \, \delta(x) = 0 \},\$$

and grad $\delta = -n$ on $\partial \Omega$. For $u \in T_e \mathscr{D}^{s,p}_{\mu}$, we have u. grad $\delta = 0$ on $\partial \Omega$ and by differentiation we obtain

u. grad[u. grad δ] = 0 on $\partial \Omega$,

i.e.,

$$\sum_{i,j} u_i \frac{\partial}{\partial x_i} \left(u_j \frac{\partial \delta_i}{\partial x_j} \right) = 0 \quad \text{on} \quad \partial \Omega.$$

Therefore on $\partial \Omega$ we have

$$\sum_{i,j} u_i \frac{\partial u_j}{\partial x_i} n_j = \sum_{i,j} \frac{\partial^2 \delta}{\partial x_i \partial x_j} u_i u_j = \beta(\cdot; u, u).$$
(12)

Note that β is a quadratic form in u depending smoothly on $x \in \partial \Omega$. We consider first the mapping Q defined by

$$Q(\eta, v) = \Big(\eta, \sum_{i,j} \Big(rac{\partial u_j}{\partial x_j} \, rac{\partial u_j}{\partial x_i} \Big) \circ \eta, \, eta(\eta; v, v) \Big),$$

where $u = v \circ \overline{\eta}^1$, which maps F into Z, where

$$Z = \Big\{ (\eta, f, g) \in \mathscr{D}^{s, p}_{\mu} \times W^{s-1, p}(\Omega) \times W^{s-1/p, p}(\partial \Omega); \int_{\Omega} f \, dx = \int_{\partial \Omega} g \circ \eta^{-1} \, d\sigma \Big\}.$$

Next, let $S(\eta, f, g)$ be defined from Z into $W^{s,p}(\Omega; \mathbb{R}^N)$ by

$$S(\eta, f, g) = (\operatorname{grad} \pi) \circ \eta,$$

where π is a solution of

$$\begin{aligned} & \Delta \pi = f \circ \eta^{-1} \quad \text{on} \quad \Omega, \\ & \frac{\partial \pi}{\partial n} = g \circ \eta^{-1} \quad \text{on} \quad \partial \Omega. \end{aligned}$$

Therefore we obtain

$$B(v \circ \eta^{-1}) \circ \eta = (S \circ Q)(\eta, v),$$

and it is sufficient to prove the following propositions:

PROPOSITION 1. The mapping $(\eta, v) \mapsto Q(\eta, v)$ is locally Lipschitz from F into Z.

PROPOSITION 2. The mapping $(\eta, f, g) \mapsto S(\eta, f, g)$ is locally Lipschitz from Z into $W^{s,p}(\Omega; \mathbb{R}^N)$.

The following lemma will be very useful.

LEMMA 4. Let $f \in W^{s,p}(\Omega)$ and $\eta \in \mathscr{D}^{s,p}_{\mu}$. Then

 $\|(\operatorname{grad}(f \circ \eta^{-1})) \circ \eta - \operatorname{grad} f\|_{s-1,p} \leqslant C_{\eta} \| \eta - e \|_{s,p} \| f\|_{s,p},$

where e denotes the identity of Ω and C_{η} a constant depending only on $\|\eta\|_{s,p}$.

Proof of Lemma 4. We have

$$\operatorname{grad}(f \circ \eta^{-1}) = {}^{t}(\operatorname{Jac} \eta^{-1}) \cdot (\operatorname{grad} f)(\eta^{-1})$$

and

$$(\operatorname{grad}(f \circ \eta^{-1})) \circ \eta = {}^{t}(\operatorname{Jac} \eta^{-1})(\eta) \operatorname{grad} f = (\operatorname{Jac} \eta)^{-1} \cdot \operatorname{grad} f.$$

We deduce from Lemma A.1 that

$$\begin{split} \|(\operatorname{grad}(f\circ\eta^{-1}))\circ\eta - \operatorname{grad} f\|_{s-1,p} \leqslant C \,\|(\operatorname{Jac} \eta)^{-1} - I\|_{s-1,p} \,\|\,\operatorname{grad} f\|_{s-1,p} \\ \leqslant C \,\|(\operatorname{Jac} \eta)^{-1}\circ(I - \operatorname{Jac} \eta)\|_{s-1,p} \,\|f\|_{s,p} \,. \end{split}$$

Remark. Lemma 4 holds true for any first-order differential operator and in a particular grad can be replaced by div or by curl.

Proof of Proposition 1. From Lemma 4, it follows easily that $(\eta, f) \mapsto (\operatorname{grad}(f \circ \eta^{-1})) \circ \eta$ is locally Lipschitz from $\mathscr{D}^{s,p}_{\mu} \times W^{s,p}(\Omega)$

into $W^{s-1,p}(\Omega; \mathbb{R}^N)$. Indeed, by Lemma A.4 (applied with $\alpha = s - 1$ and $q = p^*$), we have

$$\begin{split} \|(\operatorname{grad}(f \circ \eta_1^{-1})) \circ \eta_1 - (\operatorname{grad}(f \circ \eta_2^{-1})) \circ \eta_2 \|_{s-1,p} \\ & \leqslant C \, \|(\operatorname{grad}(f \circ \eta_1^{-1})) \circ \eta_1 \circ \eta_2^{-1} - \operatorname{grad}(f \circ \eta_2^{-1})\|_{s-1,p} (\|\eta_2\|_{s,p}^{s-1} + 1) \\ & \leqslant C(\eta_1, \eta_2) \, \|\eta_1 - \eta_2 \, \|_{s,p} \, \|f\|_{s,p} \end{split}$$

where $C(\eta_1, \eta_2)$ is locally bounded. Hence, by Lemma A.1, the mapping

$$(\eta, v) \mapsto \sum_{i,j} rac{\partial (v_i \circ \eta^{-1})}{\partial x_j} (\eta) rac{\partial (v_j \circ \eta^{-1})}{\partial x_i} (\eta)$$

is locally Lipschitz.

It remains to check that $(\eta, v) \mapsto \beta(\eta; v, v)$ is locally Lipschitz from *F* into $W^{s-1/p,p}(\partial \Omega)$. This is clear (by Lemma A.5) since $\beta(x; v, v)$ is smooth in *x* and quadratic in *v*.

In the proof of Proposition 2, we shall use the following:

LEMMA 5. There is a positive constant α such that

 $\alpha \| w \|_{s,p} \leqslant \| \operatorname{div} w \|_{s-1,p} + \| \operatorname{curl} w \|_{s-1,p} + \| w \cdot n \|_{s-1/p,p} + \| w \|_{s-1,p}$

for all $w \in W^{s,p}(\Omega; \mathbb{R}^N)$, where curl u denotes the matrix with coefficients $\varphi_{ij} = (\partial w_i / \partial x_j) - (\partial w_j / \partial x_i)$.

Proof of Lemma 5. We have

$$(\partial^2 w_i/\partial x_i \ \partial x_j) - \partial^2 w_j/\partial x_i^2 = \partial \varphi_{ij}/\partial x_i \ ,$$

and thus for all $1 \leqslant j \leqslant N$,

$$\frac{\partial}{\partial x_j} (\operatorname{div} w) - \Delta w_j = \sum_i \frac{\partial \varphi_{ij}}{\partial x_i}.$$
(13)

Let $\nu = (\nu_j) \in C^{\infty}(\overline{\Omega}; \mathbb{R}^N)$ be such that $\nu = n$ on $\partial\Omega$ and let $U = \sum_{i} \nu_j w_j$. So that

$$\Delta U = \sum_{j} \nu_{j} \frac{\partial}{\partial x_{j}} (\operatorname{div} w) - \sum_{i,j} \nu_{j} \frac{\partial \varphi_{ij}}{\partial x_{i}} + 2 \sum_{i,j} \frac{\partial \nu_{j}}{\partial x_{i}} \frac{\partial w_{j}}{\partial x_{i}} + \sum_{j} (\Delta \nu_{j}) w_{j}.$$

Therefore, by a regularity theorem for the Dirichlet problem ((see [5]), we have

$$\| U \|_{s,p} \leqslant C(\| \Delta U \|_{s-2,p} + \| U |_{\partial\Omega} \|_{s-1/p,p}) \leqslant C'(\| \operatorname{div} w \|_{s-1,p} + \| \operatorname{curl} w \|_{s-1,p} + \| w \|_{s-1,p} + \| w \cdot n \|_{s-1/p,p}).$$
Finally, for all $1 \leqslant i \leqslant N$,

$$\begin{split} V_i &= \sum_j \nu_j \frac{\partial w_i}{\partial x_j} = \sum_j \frac{\partial}{\partial x_i} (\nu_j w_j) - \sum_j \frac{\partial \nu_j}{\partial x_i} w_j + \sum_j \nu_j \varphi_{ij} \\ &= \frac{\partial U}{\partial x_i} - \sum_j \frac{\partial \nu_j}{\partial x_i} w_j + \sum_j \nu_j \varphi_{ij} \,. \end{split}$$

Hence, $\partial w_i / \partial \eta = V_{i|\partial \Omega} \in W^{s-1-1/p,p}(\partial \Omega)$ and we have the estimate

$$\left\|\frac{\partial w_i}{\partial n}\right\|_{s-1-1/p,p} \leqslant C(\|U\|_{s,p}+\|w\|_{s-1,p}+\|\operatorname{curl} w\|_{s-1,p}).$$

On the other hand, by (13), $\Delta w_i \in W^{s-2,p}(\Omega)$. Moreover,

$$\|\operatorname{grad} w_i\|_{s-1,p} \leqslant C\left(\|\varDelta w_i\|_{s-2,p} + \left\|\frac{\partial w_i}{\partial n}\right\|_{s-1-1/p,p}\right)$$

so that by (13) and the previous estimate we get

 $\|w\|_{s,p} \leqslant C(\|\operatorname{div} w\|_{s-1,p} + \|\operatorname{curl} w\|_{s-1,p} + \|w\|_{s-1,p} + \|w\|_{s-1,p} + \|w \cdot n\|_{s-1/p,p}). \blacksquare$

Remark. For any norm $||| \cdot |||$ on $W^{s-1,p}$ which is weaker than $|| ||_{s-1,p}$, there is a constant $\alpha > 0$ such that

$$\alpha \| w \|_{s,p} \leq \| \operatorname{div} w \|_{s-1,p} + \| \operatorname{curl} w \|_{s-1,p} + \| w \cdot n \|_{s-1/p,p} + \| w \|,$$

since the injection $W^{s,p} \subset W^{s-1,p}$ is compact.

Proof of Proposition 2. We have to estimate

$$X = \|(\operatorname{grad} \pi_1) \circ \eta_1 - (\operatorname{grad} \pi_2) \circ \eta_2\|_{s,p}$$

where

$$\Delta \pi_i = f_i \circ \eta_i^{-1}$$
 on Ω , $(\partial \pi_i / \partial n) = g_i \circ \eta_i^{-1}$ on $\partial \Omega$, $i = 1, 2$.

By Lemma A.4 we know that

$$X \leqslant \mathit{C}(\eta_2) \, \|(ext{grad} \ \pi_1) \circ \eta_1 \circ \eta_2^{-1} - ext{grad} \ \pi_2 \, \|_{s \ p}.$$

We shall use the Remark following Lemma 5 to estimate

$$\|(\operatorname{grad} \pi_1) \circ \eta_1 \circ \eta_2^{-1} - \operatorname{grad} \pi_2 \|_{s,p}$$
.

Let

$$\begin{split} X_1 &= \| \operatorname{div}[(\operatorname{grad} \pi_1) \circ \eta_1 \circ \eta_2^{-1} - \operatorname{grad} \pi_2] \|_{s-1,p} \\ X_2 &= \| \operatorname{curl}[(\operatorname{grad} \pi_1) \circ \eta_1 \circ \eta_2^{-1} - \operatorname{grad} \pi_2] \|_{s-1,p} \\ X_3 &= \| [(\operatorname{grad} \pi_1) \circ \eta_1 \circ \eta_2^{-1} - \operatorname{grad} \pi_2] \cdot n \|_{s-1/p,p} \\ X_4 &= \| [(\operatorname{grad} \pi_1) \circ \eta_1 \circ \eta_2^{-1} - \operatorname{grad} \pi_2] \|_{s-1/p,p} \end{split}$$

where we choose

$$||| u ||| = \sup \left\{ \int_{\Omega} u \cdot \zeta \, dx; \, \zeta \in C^{s}(\overline{\Omega}; \mathbb{R}^{N}), \, \zeta = 0 \text{ on } \partial\Omega \text{ and } || \zeta ||_{C^{s}} \leq 1 \right\}.$$

We have

div grad
$$\pi_2=arDelta\pi_2=f_2\circ\eta_2^{-1}$$

and

$$\operatorname{div}[(\operatorname{grad} \pi_1) \circ \eta_1 \circ \eta_2^{-1}] = [\operatorname{div}(\operatorname{grad} \pi_1)] \circ \eta_1 \circ \eta_2^{-1} + R$$

where, by the Remark following Lemma 4 (used with $f = (\text{grad } \pi_1) \circ \eta$ and $\eta = \eta_1 \circ \eta_2^{-1}$), we have

$$\| R \|_{s-1,p} \leqslant C(\eta_1, \eta_2) \| \eta_1 - \eta_2 \|_{s,p} \| \operatorname{grad} \pi_1 \|_{s,p} \leqslant C'(\eta_1, \eta_2) \| \eta_1 - \eta_2 \|_{s,p} (\| f_1 \circ \eta_1^{-1} \|_{s-1,p} + \| g_1 \circ \eta_1^{-1} \|_{s-1/p,p}) \leqslant C''(\eta_1, \eta_2) \| \eta_1 - \eta_2 \|_{s,p} (\| f_1 \|_{s-1,p} + \| g_1 \|_{s-1/p,p}).$$

Hence

$$\begin{aligned} X_1 \leqslant C''(\eta_1, \eta_2) \, \| \, \eta_1 - \eta_2 \, \|_{s,p} \left(\| f_1 \, \|_{s-1,p} + \| \, g_1 \, \|_{s-1/p,p} \right) \\ &+ \| f_1 \circ \eta_2^{-1} - f_2 \circ \eta_2^{-1} \, \|_{s-1,p} \end{aligned}$$

and thus

$$X_{1} \leqslant C^{m}(\eta_{1}, \eta_{2})[\|\eta_{1} - \eta_{2}\|_{s, p} (\|f_{1}\|_{s-1, p} + \|g_{1}\|_{s-1' p, p}) + \|f_{1} - f_{2}\|_{s-1, p}].$$

Similarly, since curl grad = 0, we get

$$X_{2} \leqslant C(\eta_{1}, \eta_{2}) \| \eta_{1} - \eta_{2} \|_{s, p} (\| f_{1} \|_{s-1, p} + \| g_{1} \|_{s-1/p, p}).$$

Next letting $\eta = \eta_1 \circ \eta_2^{-1}$ we have

$$X_{3} \leqslant \|(\text{grad } \pi_{1}) \circ \eta \cdot (n - n \circ \eta)\|_{s-1/p, p} + \left\| \frac{\partial \pi_{1}}{\partial n}(\eta) - \frac{\partial \pi_{2}}{\partial n} \right\|_{s-1/p, p}$$
$$\leqslant C(\eta_{1}, \eta_{2})[\|\eta_{1} - \eta_{2}\|_{s, p}(\|f_{1}\|_{s-1, p} + \|g_{1}\|_{s-1/p, p}) + \|g_{1} - g_{2}\|_{s-1/p, p}].$$

Finally we estimate X_4 ; let $\zeta \in C^s(\overline{\Omega}; \mathbb{R}^N)$ be such that $\zeta = 0$ on $\partial \Omega$. Let

$$K(\zeta) = \int_{\Omega} \left[(\operatorname{grad} \pi_1) \circ \eta - \operatorname{grad} \pi_2 \right] \cdot \zeta \, dx$$
$$= \int_{\Omega} \left[(\operatorname{grad} \pi_1) \cdot (\zeta \circ \eta^{-1}) - \operatorname{grad} \pi_2 \cdot \zeta \right] \, dx$$

Let ω and ω_{η} be solutions of the equations

$$\begin{cases} \Delta \omega = \operatorname{div} \zeta \quad \text{on} \quad \Omega \\ \frac{\partial \omega}{\partial n} = 0 \quad \text{on} \quad \partial \Omega \end{cases} \qquad \begin{cases} \Delta \omega_{\eta} = \operatorname{div}(\zeta \circ \eta^{-1}) \quad \text{on} \quad \Omega \\ \frac{\partial \omega_{\eta}}{\partial n} = 0 \quad \text{on} \quad \partial \Omega. \end{cases}$$

We can always assume that

$$\| \omega \|_{C^{s}} \leqslant C \| \zeta \|_{C^{s}},$$
$$\| \omega_{\eta} - \omega \|_{s,p} \leqslant C \| \zeta \circ \eta^{-1} - \zeta \|_{s-1,p} \leqslant C(\eta_{1}, \eta_{2}) \| \eta_{1} - \eta_{2} \|_{s,p} \| \zeta \|_{C^{s}}$$
by Lemma A.3. Thus

$$\begin{split} \| \, \omega_{\eta} \circ \eta - \omega \, \|_{s-1,p} &\leq \| \, \omega_{\eta} \circ \eta - \omega \circ \eta \, \|_{s-1,p} + \| \, \omega \circ \eta - \omega \, \|_{s-1,p} \\ &\leq C_{\eta} (\| \, \omega_{\eta} - \omega \, \|_{s-1,p} + \| \, \omega \, \|_{C^{s}} \| \, \eta - e \, \|_{s,p}) \end{split}$$

by Lemma A.3 and A.4. Hence

$$\| \omega_{\eta} \circ \eta - \omega \|_{s-1,p} \leq C(\eta_1, \eta_2) \| \eta_1 - \eta_2 \|_{s,p} \| \zeta \|_{C^s}.$$

But

$$\begin{split} K(\zeta) &= \int_{\Omega} \left[\pi_1 \cdot \Delta \omega_n - \pi_2 \cdot \Delta \omega \right] dx \\ &= \int_{\Omega} \left(\Delta \pi_1 \cdot \omega_n - \Delta \pi_2 \cdot \omega \right) dx - \int_{\partial \Omega} \left(g_1 \circ \eta_1^{-1} \cdot \omega_n - g_2 \circ \eta_2^{-1} \cdot \omega \right) d\sigma \\ &= \int_{\Omega} \left[\left(f_1 \circ \eta_1^{-1} \right) \cdot \omega_n - \left(f_2 \circ \eta_2^{-1} \right) \cdot \omega \right] dx \\ &- \int_{\partial \Omega} \left[\left(g_1 \circ \eta_1^{-1} \right) \cdot \omega_n - \left(g_2 \circ \eta_2^{-1} \right) \cdot \omega \right] d\sigma. \end{split}$$

The first term can be estimated by

$$\|f_1 - f_2\|_{L^{\infty}(\Omega)} \|\omega\|_{L^1(\Omega)} + \|f_1\|_{L^1(\Omega)} \|\omega_{\eta} \circ \eta - \omega\|_{L^{\infty}(\Omega)},$$

while the second term can be estimated by

$$\begin{split} \|g_1 - g_2\|_{L^{\infty}(\partial\Omega)} \|\omega_{\eta}\|_{L^{1}(\partial\Omega)} + \|g_2\|_{L^{\infty}(\partial\Omega)} \|\omega_{\eta} - \omega\|_{L^{1}(\partial\Omega)} \\ \\ + \|g_2\|_{Lip} \|\eta_1^{-1} - \eta_2^{-1}\|_{L^{1}(\partial\Omega)} \|\omega_{\eta}\|_{L^{\infty}(\partial\Omega)} \,. \end{split}$$

So finally

$$\begin{split} K(\zeta) \leqslant C(\eta_1, \eta_2) \, \| \, \zeta \, \|_{C^{\bullet}} [\| f_1 - f_2 \, \|_{L^{\infty}(\Omega)} + \| \, \eta_1 - \eta_2 \, \|_{s,p} \, \| f_1 \, \|_{L^1(\Omega)} \\ \\ &+ \| \, g_1 - g_2 \, \|_{L^{\infty}(\partial\Omega)} + \| \, \eta_1 - \eta_2 \, \|_{s,p} \, (\| \, g_2 \, \|_{L^{\infty}(\partial\Omega)} + \| \, g_2 \, \|_{Lip})], \end{split}$$

and

$$X_4 = \sup_{\zeta} \frac{K(\zeta)}{\|\zeta\|_{C^8}}.$$

4. A is "Tangent" to the Closed Set F

Let u and γ be given so that $u \in W^{s,p}(\Omega; \mathbb{R}^N)$ with div u = 0 on Ω and $u \cdot n = 0$ on $\partial\Omega$ and $\gamma \in W^{s,p}(\Omega; \mathbb{R}^N)$ satisfying

$$\operatorname{div}\left(\gamma-\sum_{i}u_{i}\frac{\partial u}{\partial x_{i}}\right)=0 \quad \text{on } \Omega, \qquad \left(\gamma-\sum_{i}u_{i}\frac{\partial u}{\partial x_{i}}\right)\cdot n=0 \quad \text{on } \partial\Omega.$$

In order to prove that A is tangent to F, we shall exhibit a curve $\eta \in C^2(I; \mathscr{D}^{s,p}_{\mu})$ $(I = [0, t_0], t_0$ small enough) such that $\eta_0 = e, \eta_0 = u, \eta_0 = \gamma$. This curve will be a "good approximation" in $\mathscr{D}^{s,p}_{\mu}$ of $e + tu + (t^2/2)\gamma$.

THEOREM 4. Let $u \in \mathscr{D}^{s,p}_{\mu}$ and $\gamma \in W^{s,p}(\Omega; \mathbb{R}^N)$ with s > (N/p) + 1 such that

div
$$\left(\gamma - \sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right) = 0$$
 on Ω , $\left(\gamma - \sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right) \cdot n = 0$ on $\partial \Omega$.

Then there exists a curve η_i satisfying $\eta \in C^2(I; \mathscr{D}^{s,p}_{\mu})$

$$\eta_0 = e, \qquad (14)$$

$$\dot{\eta}_0 = u, \tag{15}$$

$$\ddot{\eta}_0 = \gamma. \tag{16}$$

Remark. Conversely, if η is a curve satisfying (14), then $u = \dot{\eta}_0 \in T_e \mathscr{D}^{s,p}_{\mu}$ and $\gamma = \ddot{\eta}_0 \in W^{s,p}(\Omega; \mathbb{R}^N)$ verify

div
$$\left(\gamma - \sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right) = 0$$
 on Ω and $\left(\gamma - \sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right) \cdot n = 0$ on $\partial \Omega$.

The proofs of Theorem 4 and its Remark are based on the following lemma.

LEMMA 6. Let \mathcal{A} and \mathcal{B} be Banach spaces, and let φ be a C^2 mapping defined on a neighborhood of 0 in \mathcal{A} with values into \mathcal{B} , such that $\varphi(0) = 0$ and $D_0\varphi$ is a split surjection (i.e. $D_0\varphi$ is onto \mathcal{B} and ker $D_0\varphi$ has a topological complement in \mathcal{A}).

Given U, V in \mathcal{A} , there exists a curve $\zeta \in C^2(I; \mathcal{A})$ such that

$$\varphi(\zeta_t) = 0 \quad \text{for } t \in I, \qquad \zeta_0 = 0, \tag{17}$$

$$\zeta_0 = U, \tag{18}$$

$$\ddot{\zeta}_0 = V, \tag{19}$$

if and only if U and V satisfy

$$D_0 \varphi \cdot U = \mathbf{0},\tag{20}$$

$$D_0 \varphi \cdot V + D_0^2 \varphi(U, U) = 0.$$
 (21)

Proof of Lemma 6. It is easy to check that $U = \zeta_0$ and $V = \zeta_0$ satisfy necessarily (20) and (21) by differentiating (17). The converse relies on the implicit function theorem. Let $\mathscr{C} = \ker D_0 \varphi$, and let Pbe a continuous projection from \mathscr{A} onto \mathscr{C} . Define $\psi: \mathscr{A} \to \mathscr{B} \times \mathscr{C}$ by $\psi(u) = (\varphi(u), Pu)$, so that $D_0 \psi = D_0 \varphi \times P$ is an isomorphism from \mathscr{A} onto $\mathscr{B} \times \mathscr{C}$. Therefore, by the implicit function theorem, ψ is a C^2 isomorphism from a neighborhood of 0 in \mathscr{A} onto a neighborhood of 0 in $\mathscr{B} \times \mathscr{C}$. For t small enough, consider

$$\zeta_t = \psi^{-1}(0, tU + (t^2/2) PV).$$

Therefore, $\varphi(\zeta_i) = 0$ and $P\zeta_i = tU + (t^2/2) PV$. Consequently, $D_0\varphi \cdot \zeta_0 = 0$ and $P\zeta_0 = U$, which implies $\zeta_0 = U$. Also,

$$D_0\varphi\cdot\ddot{\zeta}_0+D_0^2\varphi(U,\,U)=0$$

and $P\zeta_0 = PV$. Hence, $D_0\varphi(\zeta_0 - V) = 0$ and $P(\zeta_0 - V) = 0$, which implies $\zeta_0 = V$.

Proof of Theorem 4. Let $\mathcal{A} = W^{s,p}(\Omega; \mathbb{R}^N)$ and let

$$\mathscr{B} = \left\{ (f,g) \in W^{s-1,p}(\Omega) \times W^{s-1/p,p}(\partial\Omega); \int_{\Omega} f \, dx = \int_{\partial\Omega} g \, d\sigma \right\}.$$

We consider the mapping φ defined on \mathscr{A} by $\varphi(u) = (\varphi_1(u), \varphi_2(u))$ where

$$\varphi_1(u) = |\operatorname{Jac}(e+u)| - \frac{1}{\operatorname{Vol}\Omega} \int_{\Omega} |\operatorname{Jac}(e+u)| \, dx - \frac{1}{\operatorname{Vol}\Omega} \int_{\partial\Omega} \delta \circ (e+u) \, d\sigma,$$

$$\varphi_2(u) = -\delta \circ (e+u)|_{\partial\Omega}$$

(recall that δ is smooth and $\partial\Omega = \{x; \delta(x) = 0\}$). Observe that φ takes its values in \mathscr{B} and that φ is C^{∞} since | Jac | is a polynomial in the first derivatives (we suppose s > (N/p) + 1; cf. Lemma A.1) and since δ is C^{∞} . For u small enough, $\varphi(u) = 0$ implies that $(e + u) \in \mathscr{D}_{\mu}^{s,p}$. Indeed, $\eta = (e + u)$ is a C^1 diffeomorphism and $\eta(\partial\Omega) \subset \partial\Omega$. Therefore, $\eta \in \mathscr{D}^{s,p}$ and since | Jac $\eta \mid = C$ is constant on Ω , we have Vol $\Omega = \text{Vol } \eta(\Omega) =$ $\int_{\Omega} \mid \text{Jac } \eta \mid dx = C \text{ Vol } \Omega$; so that C = 1 and $\eta \in \mathscr{D}_{\mu}^{s,p}$. For $v \in \mathcal{C}$, we have the expansion

$$|\operatorname{Jac}(e+tv)| = 1 + t \operatorname{div} v + \frac{t^2}{2} \left(|\operatorname{div} v|^2 - \sum_{i,j=1}^N \frac{\partial v_i}{\partial x_j} \frac{\partial v_j}{\partial x_i} \right) + \cdots$$

since for any matrix $M = (m_{ij})$ we know that

$$|I + \epsilon M| = 1 + \epsilon \operatorname{tr} M + \frac{\epsilon^2}{2} \left(|\operatorname{tr} M|^2 - \sum_{i,j=1}^N m_{ij} m_{ji} \right) + \cdots$$

Hence,

$$D_0\varphi_1\cdot v = \operatorname{div} v - \frac{1}{\operatorname{Vol}\Omega}\int_\Omega \operatorname{div} v\,dx + \frac{1}{\operatorname{Vol}\Omega}\int_{\partial\Omega} v\cdot n\,d\sigma = \operatorname{div} v;$$

580/15/4-2

and $D_0\varphi_2 \cdot v = v \cdot n$. Consequently, $D_0\varphi \cdot v = (\operatorname{div} v, v \cdot n)$ is a split surjection onto \mathscr{B} . Also

$$\begin{split} D_0^2 \varphi_1(v, v) &= \lim_{\epsilon \to 0} \frac{\varphi_1(\epsilon v) + \varphi_1(-\epsilon v)}{\epsilon^2} = |\operatorname{div} v|^2 - \sum_{i,j=1}^N \frac{\partial v_i}{\partial x_j} \frac{\partial v_j}{\partial x_i} \\ &- \frac{1}{\operatorname{Vol} \Omega} \int_{\Omega} \left(|\operatorname{div} v|^2 - \sum_{i,j=1}^N \frac{\partial v_i}{\partial x_j} \frac{\partial v_j}{\partial x_i} \right) dx \\ &- \frac{1}{\operatorname{Vol} \Omega} \int_{\partial \Omega} \sum_{i,j=1}^N \frac{\partial^2 \delta}{\partial x_i \partial x_j} v_i v_j d\sigma, \end{split}$$

and

$$D_{\mathbf{0}}^{2} \varphi_{2}(v, v) = -\sum_{i,j=1}^{N} rac{\partial^{2} \delta}{\partial x_{i} \partial x_{j}} v_{i} v_{j} = -eta(\cdot; v, v).$$

We apply now Lemma 6 with U = u and $V = \gamma$. Conditions (20) and (21) are satisfied since

$$D_0\varphi\cdot u=(\operatorname{div} u,u\cdot n)=0,$$

and by (12),

$$D_{0}\varphi_{1} \cdot \gamma + D_{0}^{2}\varphi_{1}(u, u) = \operatorname{div} \gamma - \sum_{i,j=1}^{N} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial u_{j}}{\partial x_{i}} + \frac{1}{\operatorname{Vol}\Omega} \int_{\Omega} \sum_{i,j=1}^{N} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial u_{j}}{\partial x_{i}} dx$$
$$- \frac{1}{\operatorname{Vol}\Omega} \int_{\partial\Omega} \sum_{i,j=1}^{N} \frac{\partial^{2}\delta}{\partial x_{i} \partial x_{j}} u_{i}u_{j} d\sigma = 0,$$

$$D_0\varphi_2\cdot\gamma+D_0^2\varphi_2(u,u)=\gamma\cdot n-\sum_{i,j=1}^N\frac{\partial^2\delta}{\partial x_i\,\partial x_j}\,u_iu_j=0.$$

THEOREM 5. A is "tangent" to F in the following sense:

$$\lim_{h\to 0} \frac{\operatorname{dist}((\eta, v) + hA(t; \eta, v), F)}{h} = 0 \quad \text{for all} \quad (\eta, v) \in F, \quad (22)$$

where dist(\cdot, F) denotes the distance to the closed set F in the space $X = W^{s,p}(\Omega; \mathbb{R}^N) \times W^{s,p}(\Omega; \mathbb{R}^N)$.

Proof of Theorem 5. We recall that

$$A(t;\eta,u) = (u, B(u \circ \eta^{-1}) \circ \eta + P(f_t) \circ \eta)$$

(where f_t is the given field of external forces),

$$F = \{(\eta, u) \in X; \eta \in \mathscr{D}_{u}^{s, p} \text{ and } u \circ \eta^{-1} \in T_{e}\mathscr{D}_{u}^{s, p}\}.$$

We start by proving (22) for the case $\eta = e$. We observe then that $u \in T_e \mathscr{D}^{s,p}_{\mu}$ and $\gamma = B(u) + P(f_t)$ meets the requirements of Theorem 4, i.e.,

div
$$\left(\gamma - \sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right) = 0$$
 on Ω and $\left(\gamma - \sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right) \cdot n = 0$ on $\partial \Omega$

since $\gamma - \sum_{i} u_i(\partial u/\partial x_i) = P(f - \sum_{i} u_i(\partial u/\partial x_i))$ by the definition of *B*. From Theorem 4 we know that there exists a curve $\eta \in C^2(I; \mathscr{D}^{s,p}_{\mu})$ with initial data (e, u, γ) . Since $(\eta_h, \dot{\eta}_h) \in F$, we have

$$(1/h) \operatorname{dist}[(e, u) + hA(t; e, u), F] \leq (1/h) \operatorname{dist}[(e, u) + hA(t; e, u), (\eta_h, \dot{\eta}_h)].$$

By construction of η , the right-hand side tends to 0 as $h \to 0$, which proves Theorem 5 at $\eta = e$. For the general case, we just have to notice that

$$A(t; \eta, u) = A(t; e, u \circ \eta^{-1}) \circ \eta,$$

that $\eta(F) = F$ for $\eta \in \mathscr{D}^{s,p}_{\mu}$, and that the map $v \mapsto v \circ \eta$ is continuous (cf. Lemma A.4). Therefore, we can apply the result at e, completing the proof of Theorem 5.

APPENDIX: PRODUCT AND COMPOSITION OF FUNCTIONS IN SOBOLEV SPACES

1. PRODUCT OF TWO FUNCTIONS

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with smooth boundary.

LEMMA A.1. Let $\alpha \ge 1$ be an integer, and let $1 \le p \le +\infty$, $1 \le q \le +\infty$.

If $u \in W^{\alpha,p}(\Omega)$ and $v \in W^{\alpha,q}(\Omega)$, then $u, v \in W^{\alpha,r}(\Omega)$, where r is defined by

$$1/r = (1/p) + (1/q) - \alpha/N$$
 when $\max\{p, q\} < N/\alpha$, (1)

$$r \text{ arbitrary} < \min\{p, q\} \quad \text{when} \quad \max\{p, q\} = N/\alpha \qquad (2)$$
$$(r = 1 \text{ if } p = q = N = \alpha = 1),$$

$$r = \min\{p, q\}$$
 when $\max\{p, q\} > N/\alpha$. (3)

In addition, $|| u \cdot v ||_{W^{\alpha,r}} \leq C || u ||_{W^{\alpha,p}} || v ||_{W^{\alpha,q}}$, where C depends only on α , p, q, r, and Ω .

Proof. By induction on α , the proof is easy for $\alpha = 1$. In order to show that $u \cdot v \in W^{\alpha,r}(\Omega)$, we have to prove that $u \cdot v \in L^{r}(\Omega)$ (which is straightforward) and that $Du \cdot v + u \cdot Dv \in W^{\alpha-1,r}(\Omega)$. By symmetry, it is sufficient to check that $Du \cdot v \in W^{\alpha-1,r}(\Omega)$. But $Du \in W^{\alpha-1,p}(\Omega)$ and $v \in W^{\alpha,q}(\Omega) \subset W^{\alpha-1,q^*}(\Omega)$, where q^* is determined by

$$\frac{1}{q^*} = \begin{cases} \frac{1}{q} - \frac{1}{N} & \text{when } q < N, \\ \text{arbitrarily small with} \\ \frac{1}{q^*} < \frac{1}{q} & \text{when } q = N, \\ 0 & \text{when } q > N. \end{cases}$$

We have now to distinguish three cases:

Case 1. $\max\{p, q\} < N/\alpha$ and thus $\max\{p, q^*\} < N/(\alpha - 1)$. By the induction assumption, we know that $Du \cdot v \in W^{\alpha-1,s}(\Omega)$ where $1/s = (1/p) + (1/q^*) - (\alpha - 1)/N = (1/p) + (1/q) - \alpha/N$.

Case 2. $\max\{p, q\} = N/\alpha$. Either $p \leq q = N/\alpha$, so that $q^* = N/(\alpha - 1)$. Thus, $\max\{p, q^*\} = N/(\alpha - 1)$ and by the induction assumption we know that $Du \cdot v \in W^{\alpha-1,s}(\Omega)$ for any $s < \min\{p, q^*\} = p = \min\{p, q\}$. Or $q , so that <math>\max\{p, q^*\} < N/(\alpha - 1)$ and by the induction assumption $Du \cdot v \in W^{\alpha-1,s}(\Omega)$ with

$$1/s = (1/p) + (1/q^*) - (\alpha - 1)/N = (1/p) + (1/q) - \alpha/N = 1/q.$$

Hence $Du \cdot v \in W^{\alpha-1,s}(\Omega)$ with $s = \min\{p, q\}$.

Case 3. $\max\{p, q\} > N/\alpha$. Either $q > N/\alpha$ so that

$$\max\{p,q^*\} > N/(\alpha-1)$$

and by the induction assumption $Du \cdot v \in W^{\alpha-1,s}(\Omega)$ with $s = \min\{p, q^*\} \ge \min\{p, q\}$. Or $p > N/\alpha$ and $q \le N/\alpha$; by the induction assumption $Du \cdot v \in W^{\alpha-1,s}(\Omega)$, for s as follows: when

$$\max\{p, q^*\} < N/(\alpha - 1)$$

we have $1/s = (1/p) + (1/q^*) - (\alpha - 1)/N$ and 1/s < 1/q. Therefore, $Du \cdot v \in W^{\alpha-1,s}(\Omega)$ with $s = \min\{p, q\}$. When

$$\max\{p,q^*\} \geqslant N/(\alpha-1),$$

we have $Du \cdot v \in W^{\alpha-1,s}(\Omega)$ for any $s < \min\{p, q^*\}$ and in particular we can choose $s = \min\{p, q\}$.

2. Composition of Two Mappings

Let $\Omega' \subset \mathbb{R}^M$ be a bounded domain with smooth boundary.

LEMMA A.2. Let $\alpha \ge 1$ be an integer, and let $1 \le p \le +\infty$ with $\alpha > N/p$. Let $F \in C^{\alpha}(\overline{\Omega}')$, and let $G \in W^{\alpha,p}(\Omega; \mathbb{R}^M)$ such that $G(\Omega) \subset \overline{\Omega}'$. Then $F \circ G \in W^{\alpha,p}(\Omega)$ and

$$\|F \circ G\|_{W^{\alpha,p}} \leqslant C \|F\|_{C^{\alpha}} (\|G\|_{W^{\alpha,p}}^{\alpha}+1),$$

where C depends only on α , p, Ω , and Ω' .

Proof. By induction on α , the proof is easy for $\alpha = 1$. In order to show that $F \circ G \in W^{\alpha,p}(\Omega)$, we have to check that $F \circ G \in L^p(\Omega)$ (which is obvious) and that $(DF \circ G) \cdot DG \in W^{\alpha-1,p}(\Omega)$.

Since $\alpha - 1 > N/p^*$, we know by the induction assumption that $DF \circ G \in W^{\alpha-1,p^*}(\Omega)$ with

$$\|DF \circ G\|_{W^{\alpha-1,p^*}} \leqslant C \|F\|_{C^{\alpha}} (\|G\|_{W^{\alpha-1,p^*}}^{\alpha-1}+1).$$

But $DG \in W^{\alpha-1,p}(\Omega)$ and from Lemma A.1 (Case 3) we get $(DF \circ G) \cdot DG \in W^{\alpha-1,p}(\Omega)$ with the corresponding estimate.

Remark. A slightly sharper version of Lemma A.2 can be found in [7].

LEMMA A.3. Let $\alpha \ge 1$ be an integer and let $1 \le p \le +\infty$ with $\alpha > N/p$. Let $F \in C^{\alpha+1}(\overline{\Omega}')$, and let $G \in W^{\alpha,p}(\Omega; \mathbb{R}^M)$ and

$$H \in W^{\alpha, p}(\Omega; \mathbb{R}^M)$$

such that $G(\Omega) \subset \overline{\Omega}'$, $H(\Omega) \subset \overline{\Omega}'$. Then

$$\begin{split} \|F \circ G - F \circ H\|_{W^{\alpha,p}} \\ \leqslant C \|F\|_{C^{\alpha+1}} \|G - H\|_{W^{\alpha,p}} (\|G\|_{W^{\alpha,p}}^{\alpha} + \|H\|_{W^{\alpha,p}}^{\alpha} + 1), \end{split}$$

where C depends only on α , p, Ω and Ω' .

Proof. By induction on α , the proof is easy for $\alpha = 1$. In order to show that (4) holds, we have to check that

 $\|F \circ G - F \circ H\|_{L^{p}} \leq C \|F\|_{C^{1}} \|G - H\|_{W^{1,p}}$

(which is obvious) and that

$$\|(DF \circ G) \cdot DG - (DF \circ H) \cdot DH\|_{W^{\alpha-1}}$$

can be bounded by the right-hand side in (4). But

$$(DF \circ G) \cdot DG - (DF \circ H) \cdot DH$$

= $(DF \circ G - DF \circ H) \cdot DG + (DF \circ H) \cdot (DG - DH).$

The first term in the right-hand side is bounded in $W^{\alpha-1,p}(\Omega)$ by

$$C \|F\|_{C^{\alpha+1}} \|G - H\|_{W^{\alpha-1,p^*}} (\|G\|_{W^{\alpha-1,p}}^{\alpha-1} + \|H\|_{W^{\alpha-1,p^*}}^{\alpha-1} + 1) \|G\|_{W^{\alpha,p}}$$

(using the induction assumption and Lemma A.1 with $q = p^*$), while the second term in the right-hand side is bounded in $W^{\alpha-1,p}$ by

$$C \| G - H \|_{W^{\alpha,p}} \| F \|_{C^{\alpha}} (\| H \|_{W^{\alpha-1,p*}}^{\alpha-1} + 1)$$

(using Lemmas A.1 and A.2).

The following result differs essentially from Lemma A.2 by the fact that we assume only that $F \in W^{\alpha, p}$ (instead of C^{α}), but G is here a diffeomorphism.

LEMMA A.4. Let $\alpha \ge 2$ be an integer, and let $1 \le p \le q \le +\infty$ such that $\alpha > (N/q) + 1$. Let $F \in W^{\alpha,p}(\Omega)$, and let $G \in \mathcal{D}^{\alpha,q}(\Omega)$ (i.e. $G \in W^{\alpha,q}(\Omega; \mathbb{R}^N)$ and G is a C^1 diffeomorphism from $\overline{\Omega}$ onto $\overline{\Omega}$). Then $F \circ G \in W^{\alpha,p}(\Omega)$ and

$$\|F \circ G\|_{W^{\alpha,p}} \leqslant C \|F\|_{W^{\alpha,p}} \frac{1}{\inf |\operatorname{Jac} G|^{1/p}} (\|G\|_{W^{\alpha,q}}^{\alpha}+1),$$

where C depends only on α , p, q and Ω .

Proof. By induction on α , we consider first the case where $\alpha = 2$. It is clear that $F \circ G \in L^p(\Omega)$ and

$$\|F \circ G\|_{L^p} \leqslant \frac{1}{\inf |\operatorname{Jac} G|^{1/p}} \|F\|_{L^p}.$$

Also, $D(F \circ G) = (DF \circ G) \cdot DG$ belongs to $W^{1,p}(\Omega)$ by Lemma A.1 since $DG \in W^{1,q}(\Omega)$ (q > N) and $DF \circ G \in W^{1,p}(\Omega)$ with

$$\|DF \circ G\|_{W^{1,p}} \leqslant \frac{1}{\inf |\operatorname{Jac} G|^{1/p}} (\|DF\|_{L^{p}} + \|D^{2}F\|_{L^{p}} \|DG\|_{L^{\infty}}).$$

In the general case, we have to check that $F \circ G \in L^p(\Omega)$ and that $(DF \circ G) \cdot DG \in W^{\alpha-1,p}(\Omega)$. By the induction assumption, we know that $DF \circ G \in W^{\alpha-1,p}(\Omega)$ (since $\alpha - 1 > (N/q^*) + 1$) and

$$\|DF \circ G\|_{W^{\alpha-1,p}} \leqslant C \|F\|_{W^{\alpha-1,p}} \frac{1}{\inf |\operatorname{Jac} G|^{1/p}} (\|G\|_{W^{\alpha-1,q^*}}^{\alpha-1} + 1).$$

From Lemma A.1, we conclude that $(DF \circ G) \cdot DG$ belongs to $W^{\alpha-1,p}(\Omega)$ with the corresponding estimate.

LEMMA A.5. Let $\alpha \ge 2$ be an integer, and let $1 \le p \le q \le +\infty$ be such that $p < +\infty$ and $\alpha > (N/q) + 1$. Let $F \in W^{\alpha,p}(\Omega)$; then the mapping $G \mapsto F \circ G$ is continuous from $\mathscr{D}^{\alpha,q}(\Omega)$ into $W^{\alpha,p}(\Omega)$.

Proof. Given $\delta > 0$, there exists $\tilde{F} \in C^{\alpha+1}(\bar{\Omega})$ such that

$$\|F-\tilde{F}\|_{W^{\alpha,p}} < \delta.$$

We have

$$F \circ G - F \circ H = (F \circ G - \check{F} \circ G) + (\check{F} \circ G - \check{F} \circ H) + (\check{F} \circ H - F \circ H).$$

The first and third terms in the right-hand side can be bounded in $W^{\alpha,p}(\Omega)$ (using Lemma A.4) by

$$C\delta \frac{1}{\inf |\operatorname{Jac} G|^{1/p}} \left(\|G\|_{W^{\alpha,q}}^{\alpha}+1 \right) + C\delta \frac{1}{\inf |\operatorname{Jac} H|^{1/p}} \left(\|H\|_{W^{\alpha,q}}^{\alpha}+1 \right),$$

while the second term can be bounded in $W^{\alpha,q}(\Omega)$ (and *a fortiori* in $W^{\alpha,p}(\Omega)$), using Lemma A.3, by

$$C \|\tilde{F}\|_{C^{\alpha+1}} \|G - H\|_{W^{\alpha,q}} (\|G\|_{W^{\alpha,q}}^{\alpha} + \|H\|_{W^{\alpha,q}}^{\alpha} + 1). \quad \blacksquare$$

Remark. More generally, one can show, under the assumptions of Lemma A.5, that if $F \in W^{\alpha+\beta,p}(\Omega)$, then the mapping $G \mapsto F \circ G$ is of class C^{β} from $\mathscr{D}^{\alpha,q}(\Omega)$ into $W^{\alpha,p}(\Omega)[\mathscr{D}^{\alpha,q}(\Omega)$ is provided with an appropriate manifold structure].

3. INTEGRATION OF VECTOR FIELDS

Let $F(x, t): \Omega \times [0, T] \to \mathbb{R}^N$ be a vector field tangent to $\partial \Omega$ on $\partial \Omega$ (i.e. $F(x, t) \cdot n(x) = 0$ for $x \in \partial \Omega$ and $t \in [0, T]$).

LEMMA A.6. Assume $F \in C([0, T]; W^{\alpha, p}(\Omega; \mathbb{R}^N))$ with

 $\alpha > (N/p) + 1$ and $1 \leq p < +\infty$.

Then the differential equation

$$(du/dt)(x, t) = F(u(x, t), t)$$
$$u(x, 0) = x$$

has a solution $u \in C^1([0, T]; \mathscr{D}^{\alpha, p}(\Omega))$.

Remark. Lemma A.6 is not used in our paper, but it answers a question raised by Ebin and Marsden [2] who proved the same result for the case where p = 2 and $\alpha > (N/2) + 2$.

Proof. When $\alpha = 2$ (so that p > N), we have $F \in C([0, T]; C^{1,\lambda}(\overline{\Omega}; \mathbb{R}^N)),$

where $\lambda = 1 - N/p$. In this case, it is well-known that there exists a solution $u \in C^1([0, T]; C^{1,\lambda}(\overline{\Omega}; \mathbb{R}^N))$ and in addition $(d/dt) Du = DF(u, t) \cdot Du$. On the other hand, $x \mapsto u(x, t)$ is a diffeomorphism for all $t \in [0, T]$ since

$$(d/dt) \mid \operatorname{Jac} u(x, t) \mid_{t=\tau} = \operatorname{div} F(u(x, \tau), \tau) \mid \operatorname{Jac} u(x, \tau) \mid \geq -C \mid \operatorname{Jac} u(x, \tau) \mid$$

and thus $| \operatorname{Jac} u(x, t) | \geq e^{-Ct}$. Hence, $DF(u(x, t), t) \in W^{1,p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N)$ for all $t \in [0, T]$; more precisely, the mapping $t \mapsto DF(u(x, t), t)$ is continuous from [0, T] into $W^{1,p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N)$ (as in the proof of Lemma A.5). For a fixed $u \in C^1(\overline{\Omega}, \overline{\Omega})$, the operator $v \mapsto DF(u, t) \cdot v$ is bounded from $W^{1,p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N)$ into itself (by Lemma A.1). Therefore, the linear differential equation $dv/dt = DF(u, t) \cdot v$ (considered in the Banach space $W^{1,p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N)$) has a solution

$$v \in C^1([0, T]; W^{1, p}(\Omega, \mathbb{R}^N \times \mathbb{R}^N)).$$

Consequently, $Du \in C^1([0, T]; W^{1,p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N))$ and

$$u \in C^{1}([0, T]; W^{2, p}(\Omega; \mathbb{R}^{N})).$$

In the general case, the proof is by induction on α . Since

$$F \in C([0, T]; W^{\alpha-1, \mathfrak{D}^*}(\Omega; \mathbb{R}^N)),$$

we know from the induction assumption that $u \in C^{1}([0, T]; \mathcal{D}^{\alpha-1,q}(\Omega))$, where $q = p^{*}$ for $p \leq N$ and q is any finite number for p > N.

Lemma A.4 shows that $DF(u, t) \in W^{\alpha-1,p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N)$ for all $t \in [0, T]$; more precisely, it follows from Lemma A.5 that the mapping $t \mapsto DF(u(x, t), t)$ is continuous from [0, T] into $W^{\alpha-1,p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N)$. Therefore, the linear differential equation

$$dv/dt = DF(u, t) \cdot v$$

has a solution $v \in C^1([0, T]; W^{\alpha-1,p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N))$. Consequently, $Du \in C^1([0, T]; W^{\alpha-1,p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N))$ and $u \in C^1([0, T]; W^{\alpha,p}(\Omega; \mathbb{R}^N))$.

References

- 1. V. I. ARNOLD, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier 16 (1966), 319-361.
- D. G. EBIN AND J. E. MARSDEN, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. 92 (1970), 102-163.
- 3. T. KATO, On the classical solutions of the two-dimensional non-stationary Euler equation, Arch. Rational Mech. Anal. 25 (1967), 188-200.
- T. KATO, Non-stationary flows of viscous and ideal fluids in R³, J. Functional Analysis 9 (1972), 296-305.
- J. L. LIONS AND E. MAGENES, Problèmes aux limites non homogènes, Ann. Sc. Norm. Pisa 16 (1962), 1-44.
- 6. R. H. MARTIN, Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399-414.
- 7. J. MOSER, A rapidly convergent iteration method and non-linear partial differential equations I, Ann. Sc. Norm. Sup. Pisa 20 (1966), 265-315.