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INTRODUCTION 

Let Q be a bounded domain of aBN with smooth boundary X? and 
outward normal 12. The motion of an incompressible perfect fluid is 
described by the Euler equation 

au,/at + 5 U@U$3Xj) = ji + at3pxi ) 1 <i<N, 
j=l 

on s;! x (0, T), (1) 

div u = 0 on Q x (0, T), (2) 

u-n=0 on aQ x (0, T), (3) 

u It-0 = 210 on 0, (4) 

where f(x, t) and U,,(X) are given, while the velocity u(x, t) and the 
pressure CG(X, t) are to be determined. 

The Euler equation has been considered by several authors 
including L. Lichtenstein (1925-30), J. Leray (1932-37), M. Wolibner 
(1938). T. Kato proved the existence of a global solution for N = 2 
[3] and of a local solution for Q = W3 [4]. Recently, D. Ebin and 
J. Marsden [2] have proved the existence of a local solution in the 
general case. Their proof relies heavily on techniques of Riemannian 
geometry on infinite dimensional manifolds. Our purpose is to present 

* Part of this paper was written while the first author was visiting at SUNY (Stony 
Brook) and the second author was visiting at the University of Chicago. 
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342 BOURGUIGNON AND BREZIS 

a more “classical” proof of their result by reducing (l)-(4) to an 
ordinary differential equation on a closed set of a Banach space; 
actually, we get a slightly more general result valid for LP data instead 
of L2 data. 

The main theorem is the following 

THEOREM 1. Let 1 < p < + 00, and let s > (N/p) + 1 be an 
integer. Suppose u,, E WsaP(O; RN) with div u,, = 0 on Q and u,, - n = 0 
on i3.Q. Suppose f~ C([O, T]; Cs+l+rr(Q; RN)) with 0 < OL < Il. Then 
there exists 0 < T,, < T and a unique function 

24 E C([O, To]; wq2; RN)) 

satisfying ( l)-(4). 
We thank D. Ebin and J. P. Penot for helpful conversations. 

1. NOTATIONS AND PRELIMINARIES 

Let W8pp be the Sobolev space of real-valued functions in L@ such 
that all their derivatives up to order s are in LP. In the following we 
assume that s > (N/p) + 1 so that by the Sobolev embedding theorem 
w”qq c cl+q2) with 01 = s - 1 - N/p. The norm in WQ is 
denoted by 11 Ils,p . Let 

9fs*p = (7 E wq2; RN); 

7 is bijective from a onto a and 7-l E FW”(Q; RN)). 

Note that 7 E 9 al@ if and only if 7 E W”*fl(Q; W’) and r) is a Cr diffeo- 
morphism with ?(aQ) C 22. 

Let 

where Jac 7 denotes the Jacobian matrix of 7 and ( Jac v 1 its deter- 
minant. Note that 7 E ~2~ e*p if and only if 77 E W*yP(s2; RN), / Jac 7 1 = 1 
on Sz and q(aG) C 852. 

Let 

and 
T LP,p = {u E W8.p(Q; RN); a . n = 0 on X2} e 

T ZP*P = (u E TeGP*P; div u = 0 in .n>. e II 

1 In fact, it is sufficient to assume f E C([O, T); Ws+l*p(Q; RN)) 
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Recall that if V(x, t) E C1(O x [O, T]) is such that V is tangent to the 
boundary, i.e., V(x, t) * n(x) = 0 on 22 x [O, T] and if 7(x, t) is the 
Aow generated by V, i.e. the solution of 

then 

(d/d) 1 Jac r](x, t)itsT = (div P’)(rl(x, T), T) I Jac q(x, ~>1. 

So that in particular if div V = 0 on D x [0, T], then 

( Jac &T t)l = 1 Jac q(x, ON on D x [0, T]. 

The fo!lowing lemmas are well-known (see, e.g., [5]). 

(5) 

LEMMA 1 (Neumann problem). Given an f E ?VQ(Q) (k 2 0 an 

integer) and a g E wk+l-l/*qaQ) such that 

S,fdx = JcnR de, 

there exists a u E Wkt2tp(SZ) satisfying 

Au =f on 9, 

624 

s=g on 6Q. 

In addition, 

II grad u II kfl,P G Wf llP.9 + II i? Ilk.tl--1!B,d 

LEMMA 2. Given an f E Wk3p(sZ; RN), there exists a unique 
g E TpL3$” and a 6 E Wk+l~P(sZ) such that 

f =g +grad& 

We set g = P(f). P is called the projection on divergence free vector 

jields; it is a bounded operator in Wk+(Q; RN). P is related to the solution 
of the Neumann problem in the following way: let GJ E Wkfl@(Q) be a 
solution of 

I 

ACJ = divf on 9, 

on af2. 

Then 

g = Pf ==f -gradG. 
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2. REDUCTION OF THE EULER EQUATION TO AN 
ORDINARY DIFFERENTIAL EQUATION 

Following an idea of V. Arnold [1], we shall work as in [2] with 
Lagrange variables. So, we use the configuration q of the fluid (i.e. 
the flow generated by u) as unknown. As we shall see, this leads us to 
the study of a second-order “ordinary” differential equation. 

Assuming (l)-(4) h as a solution u, let q be the flow of u: 

bwW(~, t> = U(rl(% t>, t>, ?)(x, 0) = x. (6) 

Let us rewrite the equation (l)-(4) in terms of 7. Equation (4) becomes 

(4W)(% 0) = %($. (4’) 

Equation (3) corresponds to the fact that, for each t, r](*, t) is a ditfeo- 
morphism from 0 onto itself and Eq. (2) is equivalent to 

I Jac rl@, t>l = 1 on 52 x [0, T]. (2’) 

In order to write down (1) in terms of 7, we eliminate the pressure CT, 
by applying P to (1). Using (2) we get 

(au/at) + P (1 uj(a*/a‘xj)) = Pf. 
j 

On the other hand, by differentiating (6) with respect to t, we obtain 

Therefore, 

(a27)p)(x, t) = [(I - P) 1 u,ww] M% t), t) + (Pf )W, q, q. 
* (7) 

If we keep in mind that 

we can consider (7) as an equation involving only 7. 
A crucial observation is that (7) should not be regarded as a partial 

differential equation in 77 but rather as an ordinary differential equation 
in 7 (this fact is outlined in [2, p. 1471). 
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We first write (7) as a system 

or 

(d/dt)(q a) = A(C 7, v), 

where 

A@; +I, w) = (u, B(fJ o 7-Y o 7 + WN7, t>) 

and 

We shall work in the space X = W”J’(SZ; RN) i< u/‘s~P(sZ; RN). 

345 

Clearly, A is not everywhere defined on X and not even on an open 
subset because of the additional requirement TJ E 92”. Thus we cannot 
apply standard existence theorems for ordinary differential equations, 
but shall use the following theorem which is a particular case of a result 
of R. Martin [6]. 

THEOREM 2. Let F be a closed subset of a Banach space X, and let 
A(t, z): [0, T) x F -+ X be locally Lipschitz in z and continuous in t. 
Suppose that for each (t, 2) E [0, T] x F the following holds 

lii k dist(z + hA(t, z), F) = 0.2 (11) 

Then for every z,, E F the equation 

dzjdt = A@, z), z(O) = 20 3 

admits a ZocaE solution z E Cl([O, To]; F). 

We shall apply Theorem 2 with F = ((7, v) E X; 77 E 92” and 
v 0 q-1 E T$92D’) which is clearly closed in X. 

The main steps in proving Theorem 1 are the following: 

(a) Prove that A(t; 7, v) is locally Lipschitz in (q, U) from F into 
X (see Section 3). 

2 Where dist(*, F) denotes the distance to F. 
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One has to be rather careful because the mapping r] t+ q-r is not 
locally Lipschitz from 9:” into itself (it is only continuous); similarly, 
the mapping [A 71 I-+ $0 77 is not locally Lipschitz from 92” x 92” 
into 9:” . 

(b) Prove that A(t; 7, U) is tangent to F in the sense of (11) (see 
Section 4). 

Remark. In case j = 0, Eq. (7) re p resents the equation of geodesics 
on the manifold 9:” for an appropriate weak Riemannian metric. 
Since the metric is weak (i.e. the topology induced by this metric is 
weaker than the topology of B:“), the existence of a Riemannian 
connection and of geodesics does not follow at once, but is proved 
in [2], 

3. A IS LOCALLY LIPSCHITZ 

First of all, we observe the following. 

LEMMA 3. Let j be as in Theorem 1. The mapping (t, 3) M (Pf )(q, t) 
is continuous in t and locally Lipschitz in 7 . 

Proof. As t---t t,, j(*, t) + j(*, to) in C8(D; EV), and therefore 
Pj(-, t) -+ Pj(*, t,) in Ws~p(s2; IV’). We conclude by Lemma A.4 that 
Pj(q, t) -+ Pj(,, t,) in W*~P(sZ; RN). 

For a fixed t, j(*, t) E Cs+l+a(D) and so Pj(-, t) E Cs+l+U(fi). Thus, 
by Lemma A.3, 71 c-t (Pj)(q, t) is locally Lipschitz from 9?“,‘” into 
?w”(Q; RN). a 

Remark. It is actually sufficient to assume that je IV+l~P(Q, IWN) 
and use the remark following Lemma A.5 instead of Lemma A.3. 

We shall now prove 

THEOREM 3. The mapping (7, v) I-+ B(w o q-l) o 7 (B is defined in 
(10)) is locally Lipschitz from F into wS~P(~; RN). 

The proof of Theorem 3 relies on an appropriate factorization of B. 
Note that if u E Te9:p, we have by Lemma 2, Bu = grad 8 where CT, 
is a solution of 

on Q, 

on X2. 
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But 

(since div u = 0) and 

where /3(x; U, U) denotes the second fundamental form of a&?. More 
precisely, let 6(x) be a smooth function on RN such that 

52 = {x E RN; 6(x) > O}, 

al2 = {x E RN; 6(x) = 03, 

and grad 6 = -n on X?. For u E T,%$~P, we have u, grad 6 = 0 on 
i3R and by differentiation we obtain 

i.e., 
U. grad[u. grad 61 = 0 on as, 

Therefore on a.fJ we have 

Note that fl is a quadratic form in u depending smoothly on x E 82. 
We consider first the mapping Q defined by 

where u = a o 31, which maps F into 2, where 

Next, let S(v, j, g) be defined from 2 into WSpp(sL; VP’) by 

%,f, g) = (grad 4 0 rl, 
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where 7~ is a solution of 

Arr=foq-1 on Q, 
a57 
an =go7-1 on X?. 

Therefore we obtain 

WJ o 7-l) D 7 = (8 o ,0)(7,4, 

and it is sufficient to prove the following propositions: 

PROPOSITION 1. The mapping (7, v) I-+ Q(q, v) is locally Lipschitx 
from F into 2. 

PROPOSITION 2. The mapping (q, f, g) t-t S(y, f, g) is locally Lipschitx 
from Z into Ws~~(sZ; RF). 

The following lemma will be very useful. 

LEMMA 4. Let f E WS~~(G’) and 11 E gk”. Then 

Il(grad(f 0 7-r)) 0 r] - gradf/I,-l,, G C,, II 7 - e 11s.2, IIf k9 l 

where e denotes the identity of 9 and C,, a constant depending only on 
II 7 1ls.p ’ 

Proof of Lemma 4. We have 

grad(f 0 7-l) = “( Jac 71-l) . (grad f )(7-l) 
and 

(grad(f 0 7-l)) 0 7 = “( Jac ~-l)(y) grad f = (Jac 7)-r * gradf. 

We deduce from Lemma A.1 that 

Ij(grad(f 0 7-l)) 0 7 - grad f /Is--1,8 B C Il(Jac rl)-l - 1 IIH,~ II gradf lLD 

B C iI(Jac q>-’ 0 (1 - Jac rl)lIS-~.p ilfll,,, . 

Remark. Lemma 4 holds true for any first-order differential 
operator and in a particular grad can be replaced by div or by curl. 

Proof of Proposition 1. From Lemma 4, it follows easily that 

hf) ~--t (vd(f 0 0) 0 7 is locally Lipschitz from 9:” x W+‘(Q) 
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into Ws-l~p(Q; W’). Indeed, by Lemma A.4 (applied with 01 = s - 1 
and q = p*), we have 

il(grNf~ ~3) 0 q1 - krad(fo $3) 0 72 IL8 

< C ilkraW 0 7?)) 0 71 0 7ii1 - grad(f 0 7i?)lL,,(ll 7z !I::,’ + 1) 

G CC71 , 72) 11 71 - 7~2 /is.p iiflls,, 

where C(Q , Q) is locally bounded. Hence, by Lemma A.1, the 
mapping 

(7, v) k+ 2 ayT-l) (7) y?-l) (7) 

i,j 3 a 

is locally Lipschitz. 
It remains to check that (q, V) H /3(~ ; U, ZJ) is locally Lipschitz from 

F into wsV1lPJ’(aQ). This is clear (by Lemma A.5) since /3(x; o, V) is 
smooth in x and quadratic in v. n 

In the proof of Proposition 2, we shall use the following: 

LEMMA 5. There is a positive constant 01 such that 

fey all w E Ws~P(Q; RN), where curl u denotes the matrix with coejicients 
vii = (aw,/a~~) - (awj/axi). 

Proof of Lemma 5. We have 

(a2wijaxi axi) - a2wjjaxi2 = aypijiaxi , 

and thus for all 1 < j < N, 

(13) 

Let Y = (vJ E C”(Gj; RN) be such that v = n on aQ and let U = 
C viwj . So that 
i 
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Therefore, by a regularity theorem for the Dirichlet probhn ((see 
[S]), we have 

II u (l&3) d C(ll AU IL-8.9 + II U laa lls49.9) 

< C’(ll div w 118-l.p + II curl w /lS-I.s + II w llS-~,l, + II W * * lL.-1h.~). 

Finally, for all 1 < i < iV, 

Hence, &,/a~ = Vi,,, E Ws-l-l~p~p(X?) and we have the estimate 

i3Wi I/ I/ an s-1-l/P.lr 
< C(ll u l/s.B + II w !LD 4 It curl w l18-1.p>~ 

On the other hand, by (13), dev, E Ws-2*P(s2). Moreover, 

II grad *i lls--l.D -. < c (II 4 L-2.2, + j/ 2 !\8-1--1,D .) 

SO that by (13) and the previous estimate we get 

(I w (j8,p d C(ll div w IIS-I.P + II curl w lla--1.9, + !I w lls--1,8 -I- II w * n h-~m). n 

Remark. For any norm II/ * j I/ on W*-r~p which is weaker than 

II IL-1,p 9 there is a constant a > 0 such that 

OL 11 w lj8,D < II div w 1)5--1,3) + II curl w 1ls--1.2, + II w * * Ils--I~p,p -I- /!I w /I/, 

since the injection W8y~ C JV+l~P is compact. 

Proof of Proposition 2. We have to estimate 

X = Il(grad 711) 0 rll - (grad 7r2) 0 71~ 1l9.9 

where 

Ani =fi~q;l on X2, (&@?J) = g, 0 q;’ on x2, i = 1,2. 

By Lemma A.4 we know that 

X < C(q,) //(grad T) 0 Q 0 71~~ - grad “2 IIS P. 
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We shall use the Remark following Lemma 5 to estimate 

Ij(grad ~~1) 0 ?I 0 7;* - grad ~2 !iS.D . 

Let 
X, = I/ div[(grad or) 0 71 0 7;’ - grad XZ]!~~-I.D 

X2 = \I curl[(grad TJ 0 Q 0 7i1 - grad ~&-I,~ 
X3 = lI[(grad 7~~) 0 rll 0 7i1 - grad 721 * 71 IL--l~p,~ 
X, = /jJ(grad 7,) 0 Q 0 7;l - grad TZ :!I, 

where we choose 

We have 

div grad 7, = An2 = fa o 7i1 

and 

div[(grad TT~) o 7r o 73 = [div(grad nl)] 0 Q 0 721 + R 

where, by the Remark following Lemma 4 (used withf = (grad TV) 0 7 
and 7 = 7l 0 7;‘), we have 

Hence 

Xl < C”(71 , 72) II 71 - 72 /!S,D (Ilfi lls-1.p t !I g, Ii,-I;,.,> 

+ llfl a 72 -h o 7;’ ILn 

and thus 

Similarly, since curl grad = 0, we get 
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Next letting 77 = Q 0 7;’ we have 

-5 G Ilkrad ~1) 0 rl - (8 - n 0 dl18-l~s.s + ii 2 Crl) - 2 ils~l,..9 

B Ch 9 %xll171 - r/z lls.2, WI IL.4, + II g1 ILhr) + II g1 - gz IL-,,,.,I. 

Finally we estimate X4; let 5 E C6(Q; RN) be such that 5 = 0 on 852. 
Let 

= 
s 
a [(grad mI) * ({ 0 7-l) - grad GT~ * 5] dx. 

Let w and wn be solutions of the equations 

( Aw = div [ on s2 
i 

Aw, = div([ 0 77-l) on J.2 

i 
au 
an= 

0 on ai 
1 

au, _ - - 
an 

0 on af2. 

We can always assume that 

II fJJ lIC” d c II 5 lip 9 

11 WV - &J /l&p < c II 5 O 7-l - 5 IL-1.2, G WI1 3 712) II 771 - r/2 IlS,B II 5 lb 

by Lemma A.3. Thus 

II WV 0 71 - UJ lls--l.p G II wn o 77 - w o rl lIs--l.p + II ” o rl - w IL.* 

< qi WV - OJ Ils--l.p + II cfJ llCd II ‘I - e II,,,) 

by Lemma A.3 and A.4. Hence 

II WI1 o 77 - w Ild-l.p < ml ,11J II 71 - 112 Ils.p II 5 IIC’ - 

But 



4. A IS “TANGENT" TO THE CLOSED SET F 

Let u and y be given so that u E W”~P(sZ; RN) with div u = 0 on $2 
and u * n = 0 on iX2 and y E JW~(Q; RN) satisfying 

div 
i 
y -c ui g] = 0 on Q, 

E 2 

In order to prove that A is tangent to F, we shall exhibit a curve 
q E ql; qy) (I = [O, to], t, small enough) such that q0 = e, 7j,, = U, 
$-, = y. This curve will be a “good approximation” in $3”;” of 
e + tu + (t2/2)r. 

THEOREM 4. Let u E 9$p and y E Ws~P(Q; W) with s > (N/p) + 1 
such that 

div 
i 
y -c Us $, = 0 on !2, 

z t 
(y-~uu,$).n==O on a.0. 
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Then there exists a curve qr satisfring 77 E Cz(l; 9;~“) 

q. = e, (14) 

40 = 21, (15) 
ijo = y. (16) 

Remark Conversely, if 7 is a curve satisfying (14), then u = 
$, E Tpip and y = +j, E W~p(Q; RN) verify 

div(r-Tr+s)=O onJ2 and (y-?~-f&)-n=O on&?. 

The proofs of Theorem 4 and its Remark are based on the following 
lemma. 

LEMMA 6. Let 6Z and 9’ be Banach spaces, and let q~ be a C2 mapping 
dejined on a neighborhood of 0 in #l with values into 93, such that ~(0) = 0 
and Doe, is a split surjection (i.e. D,,4p is onto .99 and ker D,g, has a 
topological complement in a). 

Given U, V in Cl, there exists a curve 5 E C2(I; CY) such that 

~(5~) = 0 for t ~1, 50 = 0, (17) 

lo = u, WV 

lo = v, (19) 
if and only if U and V satisfy 

D op * u = 0, (20) 

D ok * V + Do2#.J, U) = 0. (21) 

Proof of Lemma 6. It is easy to check that U = {, and V = f, 
satisfy necessarily (20) and (21) by differentiating (17). The converse 
relies on the implicit function theorem. Let ‘3’ = ker D,,q+ and let P 
be a continuous projection from GE onto V. Define #: 6?! --+ 93 x g by 
3@) = (P(U)9 p u ) , so that D,zJ = D,,p, x P is an isomorphism from G! 
onto @ x ‘19. Therefore, by the implicit function theorem, # is a C2 
isomorphism from a neighborhood of 0 in CZ? onto a neighborhood of 
0 in B x %‘. For t small enough, consider 

St = $k-yo, tu + (t2/2) PV). 
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Therefore, ~(1~) = 0 and P{, = tU + (t2/2) pv. COnSeqUentlY, 
D 0v . j, = 0 and P[, = U, which implies %, = U. Also, 

D,~J . <, + Dfdu, u> = 0 

and I’[,, = PY. Hence, D,p(&, - V) = 0 and I’(&, - V) = 0, which 
implies [, = v. n 

Proof of Theorem 4. Let G? = W”~~(Q; UP) and let 

L?8 = (f, g) E ws-y2) x 
i 

Iv - s l’pqaf2); jJdx = i*g do/. 

yleznsider the mapping cp defined on 0! by q(u) = (yr(u), qua) 

~~(4 = --6 0 (e + 4h2 

(recall that 6 is smooth and 22 = {x; 6(x) = 01). Observe that 91 takes 
its values in 2# and that q~ is C” since 1 Jac / is a polynomial in the first 
derivatives (we suppose s > (N/p) + 1; cf. Lemma A.l) and since 6 is 
C”. For u small enough, p)(u) = 0 implies that (e + U) E 9:“. Indeed, 
r = (e + U) is a Cr diffeomorphism and ~(282) C X?. Therefore, 71 E 5W’ 
and since 1 Jac 9 j = C is constant on Q, we have Vol a = Vol q(Q) = 
SQ / Jac 7 ( dx = C Vol Q; so that C = 1 and q E 92p. For v E 0?, we 
have the expansion 

j Jac(e+tw)j = 1 +tdivo+$(/diverj2- F ““-3]+..- 
i j=l ax, axi 

since for any matrix M = (mii) we know that 

II+dkf( = 1 +rtrM+$(jtrM/z- 5 m,mji f *‘* 
i,i=l 

) 

Hence, 

D 
I 

s 
1 ,q+*v=divv--Q ndivvdx+VolQ ESav-ndu=divv; 

I 

SW 514-2 
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and D,p, * v = v . n. Consequently, D,,g, - v = (div v, v * TZ) is a 
split surjection onto 9Y. Also 

= ( div 2, 12 - f !!?C !!k 

i,j=l axj axi 

-- I div v I2 - i$I $- $) dx 
3 z 

-- v,q do, 

and 

D,2p2(v, v) = -; a2s -v/uj = -/3( * ; v, v). 
i,i=l axi ax, 

We apply now Lemma 6 with U = u and V = y. Conditions (20) and 
(21) are satisfied since 

and by (12), 

D oy * u = (div u, u . n) = 0, 

Do~I~y+D,2pI(u,u) =divy- f %%+&I N 
i,j=l ax, ax, 

C aui auj dx 
R i.j=l ax, axi 

N a28 
Q,P)~ . Y + Do2~2(u, u) = Y * n - c - 

i,j,l axi a+ 
u,uj = 0. n 

THEOREM 5. A is “tangent” to F in the following sense: 

gj dist((rl, v) + WC 7, v),F) = o 
+ h 

for all (7, v) EF, (22) 

where dist(*, F) denotes the distance to the closed set F in the space 
x = wq2; RN) x W~q2; RN). 

Proof of Theorem 5. We recall that 

4; rl,u) = (u, B(u O 7-l) o 77 + P(f,) o 17) 



EULER EQUATION 357 

(where ft is the given field of external forces), 

F = ((7, u) E X; 7 E g$P and u 0 7-l E T,g:,“}. 

We start by proving (22) for the case q = e. We observe then that 
u E T,9~p and y = B(u) + P(fJ meets the requirements of Theorem 4, 
I.e., 

since y - c u,(&/ax,) = P(f - C ui (au/&,)) by the definition of B. 

From The&em 4 we know that ihere exists a curve 71 G C2(1; 9:“) 
with initial data (e, U, y). Since (Q , rjh) EF, we have 

(l/h) dist[(e, u) + hA(t; e, u),F] d (l/h) dist[(e, u) + h&t; e, 4, (7h ,+Jl. 

By construction of q, the right-hand side tends to 0 as h -+ 0, which 
proves Theorem 5 at q = e. For the general case, we just have to 
notice that 

A(t; 7,u) = A(t; e, u 0 7-l) 0 7, 

that q(F) = F for 7) E g:“, and that the map v t-+ v o 7) is continuous 
(cf. Lemma A.4). Therefore, we can apply the result at e, completing 
the proof of Theorem 5. n 

APPENDIX: PRODUCT AND COMPOSITION OF 
FUNCTIONS IN SOBOLEV SPACES 

1. PRODUCT OF Two FUNCTIONS 

Let Q C RN be a bounded domain with smooth boundary. 

LEMMA A.1. Let 01 > I be an integer, and let 1 < p < + CD, 
1 GqQ+fco. 

Ifu E WaP(sZ) and v E W”(~~(s2), then u, ZI E W7’(!2), where Y is deJined 
bY 

l/r = (UP) + wl) - 4Q when max{p, q> < N/0., (1) 
r arbitrary < min{p, q) when max{p, qj = N/a (2) 

(r = 1 ifp = q = N = CL = l), 

r = min{p, q} when max{p, q} > N/a. (3) 
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In addition, IJ 24 * v Ijw~,r ,< C 11 24 11 
on a, p, q, r, and 9. 

wa,p 11 w IIwm,~, where C depends only 

Proof. By induction on a, the proof is easy for a! = 1. In order to 
show that u . w E IWr(ln), we have to prove that u i ‘u EL/(Q) (which 
is straightforward) and that DU * D + u * Du E W+r(Q). By sym- 
metry , it is sufficient to check that DU * v E W~-l~r(Q). But 
DU E IV-l+(Q) and ca E W**(Q) C wO-1,**(Q), where p* is determined 
bY 

1 1 --- 
q iv 

/ arbitrarily 

when q < N, 

1 small with 
ip= 1 1 

;ir*‘<; when q = N, 

LO when q > N. 

We have now to distinguish three cases: 

Case 1. max{p, q} < N/ c1 and thus max{p, q*) < N/(cu - 1). By 
the induction assumption, we know that DU * w E w”-‘*“(Q) where 
l/s = U/P) + U/q*) - (a - II/N = U/P) + (l/q) - a/N. 

Case 2. max{p, q) = Nlar. Either p < q = N/LX, so that q* = 
N/(a: - 1). Thus, max(p, q*) = N/(a - 1) and by the induction 
assumption we know that Du * v E w*-‘+(Q) for any s < min(p, q*} = 
p = min{p, q). Or q <p = N/LX, so that max{p, q*} < N/(or - 1) and 
by the induction assumption DU * v E W~-l~S(Q) with 

l/s = (l/p) + (l/q*) - (a - 1)/N = (UP) + (l/q) - a/N = l/q. 

Hence DU . v E WE-l+(sZ) with s = min(p, q}. 

Case 3. max(p, q} > N/or. Either q > N/a so that 

ma+, q*) > N/b - 1) 

and by the induction assumption Du * v E W-Q(Q) with s = 
min{p, q*) > min(p, q}. Or p > N/a and q < N/a; by the induction 
assumption Du . w E Wa-1+2), for s as follows: when 

ma+, q*> -=c N/la - 1) 
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we have l/s = (l/p) + (l/q*) - (a - 1)/N and l/s < l/q. There- 
fore, DU . u E ~-i+(S) with s = min(p, 41. When 

max{p, q*) 3 Nj(ol - l), 

we have DU . F E W~-‘~s(sZ) for any s < min(p, q*\, and in particular 
we can choose s = min(p, q]. n 

2. COMPOSITION OF Two MAPPINGS 

Let Q’ C IWM be a bounded domain with smooth boundary. 

LEMMA A.2. Let CY > 1 be an integer, and let 1 6 p < + CO with 
a: > N/p. Let F E @(8’), and let G E Wa*p(Q; IW”) such that G(Q) C a’. 
Then F 0 G E Wan” and 

/IF 0 G Ii ,+ra,n e C 1; F&c, (!I G !l”,,.y + I), 

where C depends only on a, p, s2, and SY. 

hoof. By induction on a, the proof is easy for cy. = 1. In order to 
show that F 0 G E Wa*p(S1), we have to check that F o G E Lp(Q) (which 
is obvious) and that (DF 0 G) * DG E w”-‘J’(Q). 

Since cy - 1 > N/p*, we know by the induction assumption that 
DF 0 G E W%-i>p*(sZ) with 

I/ DF 0 G liwR-l.p* G C II F /lCa (It G ll~,L,8 -k I). 
But DG E J4+13p(Q) and from Lemma A.1 (Case 3) we get 
(DF 0 G) * DG E P-r*p(Q) with the corresponding estimate. n 

Remark. A slightly sharper version of Lemma A.2 can be found 
in [7]. 

LEMMA A.3. Let LY > 1 be an integer and let 1 < p < + CO with 
a > N/p. Let F E C”+l(O’), and let G E W&>P(SZ; IW”) and 

HE WuS”(Q IW”) 

such that G(Q) C Q’, H(Q) C 0’. Then 

II F 0 G - F 0 H ll,+w 

< C II F /lCa+l /I G - H llWa.v (II G II”,,.. + II H li”,,.e + l), 

where C depends only on LY, p, Q and Q’. 
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Proof. By induction on 01, the proof is easy for 01 = 1. In order to 
show that (4) holds, we have to check that 

IFoG--FoHII,, G CllFIl,,llG--II,,,, 

(which is obvious) and that 

lI(DF o G) - DG - (DF 0 H) * DH lJWa--l. 

can be bounded by the right-hand side in (4). But 

(DFoG)*DG-(DFoH)*DH 

=(DFoG-DFoH).DG+(DFoH)*(DG-DH). 

The first term in the right-hand side is bounded in IVa-r*p(Q) by 

(using the induction assumption and Lemma A.1 with q = p*), while 
the second term in the right-hand side is bounded in W--l,* by 

C II G - H Illyarns II F llCa (II H II&i-I-,.,* + 1) 

(using Lemmas A.1 and A.2). n 

The following result differs essentially from Lemma A.2 by the fact 
that we assume only that FE WayP (instead of P), but G is here a 
diffeomorphism. 

LEMMA A.4. Let a > 2 be an integer, and let 1 < p < q < + CO 
such that 01 > (N/q) + 1. Let FE W”9p(s2), and let G E W”(Q) (i.e. 
G E Wa~Q(.Q; W) and G is a Cl dz#eomorphism from Q onto 0). Then 
F o G E WQ(Q) and 

where C depends only on 01, p, q and Sz. 

Proof. By induction on IX, we consider first the case where 01 = 2. 
It is clear that F o G ELP(Q) and 

IlFo GII,, < l inf 1 Jac G )l/p II F IL= - 
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Also, D(F o G) = (DF o G) * DG belongs to IW~(f2) by Lemma A.1 
since DG E Wlsq(S) (q > N) and DF o G E IPP(s2) with 

/I DF 0 G lIwm < ’ inf / Jac G lljP (II DF llLp + /I D2Fll,s It DG llLmm). 

In the general case, we have to check that F 0 G ED’(Q) and that 
(DF o G) . DG E W”-rrP(Q). By the induction assumption, we know 
that DF 0 G E Wti-13p(sZ) ( since (y. - 1 > (N/q*) + I) and 

From Lemma A.1, we conclude that (DF 0 G) * DG belongs to 
WU-r~P(Q) with the corresponding estimate. n 

LEMMA A.5. Let a: > 2 be an integer, and let 1 < p < q < + w be 
such that p < + 00 and cx > (N/q) + 1. Let F E W+(Q); then the 
mapping G H F 0 G is continuous from 6&q(Q) into Wyp(Q). 

Proof. Given 6 > 0, there exists P E C+l(s) such that 

We have 

The first and third terms in the right-hand side can be bounded in 
Wa3P(fi) (using Lemma A.4) by 

c-6 1 
(II G ll$a., + 1) + f3 

1 
inf 1 Jac G Ill* inf 1 Jac H I1lP (IIHII”,,,, + 11, 

while the second term can be bounded in Wa,q(Q) (and a fortiori in 
Pap(Q)), using Lemma A.3, by 

Remark. More generally, one can show, under the assumptions of 
Lemma A.5, that if F E Wa+S.~(Q), then the mapping G H F 0 G is of 
class 19 from 9”(Q) into W~~~(Q)[9~q(Q) is provided with an 
appropriate manifold structure]. 
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3. INTEGRATION OF VECTOR FIELDS 

Let F(x, t): D x [0, T] -P UP’ be a vector field tangent to asZ on X? 
(i.e. F(x, t) * n(z) = 0 for x f aQ and t E [0, TJ). 

LEMMA A.6. AssumeF E C([O, T]; wol~p(Q; W)) with 

a > W/P) + 1 and l<p<+ccL 

Then the differential equation 

(Wdt)(x, t) = F(+, t), t) 

24(x, 0) = x 

has a solution u E Cl([O, T]; 9”p@(J2)). 

Remark. Lemma A.6 is not used in our paper, but it answers a 
question raised by Ebin and Marsden [2] who proved the same result 
for the case where p = 2 and CY > (N/2) + 2. 

Proof. When ~1 = 2 (so that p > N), we have 

FE C([O, T]; W(!?; RN)), 

where h = 1 - N/p. In this case, it is well-known that there exists a 
solution u E Ci([O, T]; C1gA(a; UP)) and in addition (d/dt) Du = 
DF(u, t) * Du. On the other hand, x t+ u(x, t) is a diffeomorphism for 
all t E [0, T] since 

(44 I Jac 4~ r)lt=, = div F(B(x, T), T) 1 Jac u(x, T)I > -C ( Jac U(X, T)/ 

and thus [ Jac U(X, t)l > e- C! Hence, DF(u(x, t), t) E wl+(L?; W’ x IWN) 
for all t E [0, T]; more precisely, the mapping t H DF((u(x, t), t) is 
continuous from [0, T] into FPp(Q; RN x RN) (as in the proof of 
Lemma AS). For a fixed u E Cl@?, a), the operator v H DF(u, t) * v is 
bounded from wlJ+?; [WN x IWN) into itself (by Lemma A.l). There- 
fore, the linear differential equation dvldt = DF(u, t) * v (considered 
in the Banach space wlsP(Q; RN x RN)) has a solution 

v E Cl([O, T]; ?vyQ, RN x UP)). 

Consequently, Du E Cl([O, T]; ?Wp(sZ; IW x W-f)) and 

u E cl@, T]; J@“(.n; RN)). 
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In the general case, the proof is by induction on 01. Since 

FE C([O, T]; W”1s”*(12; RN)), 

we know from the induction assumption that u E Cl([O, T]; %-‘~~(Q)), 
where q = p* for p < N and q is any finite number for p > N. 

Lemma A.4 shows that DF(u, t) E W-rJ’(Q; RN x RN) for all 
t E [0, T]; more precisely, it follows from Lemma A.5 that the mapping 
t H DF(u(x, t), t) is continuous from [O, T] into IVa-r,p(J22; RN X RN). 
Therefore, the linear differential equation 

dv/dt = DF(u, t) . v 

has a solution TJ E Cl([O, 7’1; W-iJ’(sZ; RN x RN)). Consequently, 
DU E P([O, T]; Wa-lJ’(sZ; RN x RN)) and u E Cl([O, T]; W~(s2; RN)). 

n 
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