## 1 Introduction

These notes describe a technique for using cyclic linear codes to produce highly self-similar branch groups. These groups should be viewed as generalizations of the first grigorchuk group, which corresponds to the $[3,2] \operatorname{code}^{1}\{110,101,011,000\}$ over $\mathbb{F}_{2}$.

The grigorchuk group is generated by automorphisms of $a, b, c, d$ of the complete binary tree, where $a$ flips the first level, and $b, c, d$ are in the stabilizer the first level, defined by:




It's helpful to spell out this recursion as in


$b, c$, and $d$ all have order 2 , and generate a subgroup of order 4 . This is easy to check explicitly: since all of them stabilize the subtree $\lambda$, we can just multiply them pointwise. I'll just show one example


Notice $b \cdot c$ satisfies the same recurrence that $d$ does, so $b \cdot c=d$.
We can identify $b, c$, and $d$ with the vectors 110,101 , and 011 respectively, based on the pattern of 1 's and $a$ 's we see ${ }^{2}$. If we do that, the computation $b \cdot c=d$ amounts to saying $110+101=011$.

[^0]
## 2 A new example

Here is a new example I will call $G$, based on a cyclic $[7,3]$ code. This is also a group of automorphisms of the binary tree, generated by $a$ and:

| b | $: 1110100$ |
| :---: | :---: |
| c | $: 1101001$ |
| d | $: 1010011$ |
| e | $: 0100111$ |
| f | $: 1001110$ |
| g | $: 0011101$ |
| h | $: 0111010$ |

So, for example:


Similarly to the grigorchuk group, $b, c, d, e, f, g, h$ all have order 2 , and generate a subgroup of order 8 , isomorphic to $\left(\mathbb{Z}_{2}\right)^{3}$. As before, this ammounts to just checking the codewords are closed under sums. For reasons I explain next section, this follows from the fact $x^{4}+x^{2}+x+1 \mid x^{8}-1$ over $\mathbb{F}_{2}$. Furthermore, as this code is closed under cyclic permutations, we also have a short recursive presentation for the group:








This group has many properties in common with the classical grigorchuk group, proved in very much the same way

Theorem 2.1. $G$ is a self replicating 2-group of intermediate growth (self replicating meaning every vertex stabilizer is isomorphic to the original group)

As this proof has no new content, I'll leave this as a special case of a later result.

Question 1. Is the growth function of $G$ slower than the growth of the first grigorchuk group?

I originally constructed $G$ hoping this would be true; $3 / 7$ generators for $G$ get rewritten as 1 in the next level, as opposed to only $2 / 3$

## 3 Cyclic codes

An $[n, k]$ linear code $C$ over $\mathbb{F}$ is a $k$-dimensional subspace of $\mathbb{F}^{n}$. One refers to elements of $C$ as codewords. Traditionally, $\mathbb{F}$ is a finite field ( $\mathbb{F}_{2^{n}}$ in most computer applications), and $C$ is constructed so distinct codewords differ in many coordinates. The minimum number of coordinates where two codewords differ is called the minimum distance of the code. As the difference of codewords is another codeword, this is equal to the minimum number of non-0 coordinates in a non- 0 codeword, or the weight of that codeword.

Example 3.1. The subspace $C=\{110,101,011,000\}$ of $\left(\mathbb{F}_{2}\right)^{3}$ is a $[3,2]$ linear code with minimum distance 2. A typical application of such a code is as follows: Alice wants to send Bob a 2-bit message over a noisy channel which has a $10 \%$ chance to flip each bit. If Alice just sends 2 bits, there is a $19 \%$ chance Bob recieves the wrong message.
Instead, suppose Alice sends 3 bits, and Bob knows Alice will always send a word in $C$. Then there is a $72.9 \%$ chance Bob receives the correct message, but only a $2.6 \%$ chance Bob recieves the wrong message. $24.4 \%$ of the time, the word Bob receives is not in $C$, and he knows an error occurred; This is often much better than having an incorrect message.

A code is called cyclic if every cyclic shift of a codeword is also a codeword; so, if 1110 is a codeword, then so are 1101,1011 , and 0111 . Of course, these 4 vectors generate $\mathbb{F}_{2}^{4}$, so there are no non-trivial cyclic codes over $\mathbb{F}_{2}$ containing 1110. Interesting cyclic codes do exist; the code in example 3.1 is cyclic. I will now describe a way to find them.

Suppose $C$ is a cyclic code in $\mathbb{F}^{n}$. Let's identify $\mathbb{F}^{n}$ with the ring $R=$ $\mathbb{F}[x] /\left(x^{n}-1\right)$, using the standard basis $\left(1, x, \ldots, x^{n-1}\right)$. Suppose $a=\left(a_{0}, \ldots a_{n-1}\right) \in$ $C$. Multiplying by x , we see:

$$
\begin{aligned}
x *\left(a_{0}, \ldots a_{n-1}\right) & =x *\left(a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}\right) \\
& =a_{0} x+a_{1} x^{2}+\cdots+a_{n-1} x^{n} \\
& =a_{0} x+a_{1} x^{2}+\cdots+a_{n-1} \cdot 1 \\
& =a_{n-1}+a_{0} x+a_{1} x^{2}+\cdots+a_{n-2} x^{n-1} \\
& =\left(a_{n-1}, a_{0}, \ldots, a_{n-2}\right)
\end{aligned}
$$

So, $x \cdot a$ represents a cyclic shift of $a$, so the condition $C$ is cyclic means $C$ is closed under multiplication by $x$. In other words, $C$ is an ideal in $R$.

Ideals in $R$ correspond to ideals in $\mathbb{F}[x]$ containing $\left(x^{n}-1\right)$. Since $\mathbb{F}[x]$ is a PID, these correspond precisely to factors of $x^{n}-1$ over $\mathbb{F}$. The monic polynomial that generates a cyclic code (as an ideal) is called it's generator polynomial.

Example 3.2. Let's classify dimension 3 cyclic codes over $\mathbb{F}_{2}$. They must correspond to factors of $x^{3}-1$. Over $\mathbb{F}_{2}$, this factors as $(x+1)\left(x^{2}+x+1\right)$, so there are 4 possible gnerator polynomials:

1 (1) is everything, so this code is all of $\mathbb{F}_{2}^{3}$
$x+1$ This generates the code from example 3.1. You can see this a few ways:

- $x+1 \mid p \Leftrightarrow p(1)=0$. Over $\mathbb{F}_{2}$, this is the same as having an even number of 1 's, which characterizes $\{110,101,011,000\}$
- The next lemma will show this is a $3-1=2$ dimensional subspace of $\mathbb{F}_{2}^{3}$, so it must be generated by $x+1$ and $x^{2}+x$.
$x^{2}+x+1$ This code is $\{111,000\}$. As $x\left(x^{2}+x+1\right)=x^{2}+x+1$, so there's only one (linear) generator

Lemma 3.1. The dimension of a cyclic code in $\mathbb{F}^{n}$ is $n-k$, where $k$ is the degree of it's generator polynomial.

Proof. Let $C$ be generated by the polynomial $g(x)$. Then $C=\{f(x) g(x) \mid f \in$ $\mathbb{F}[x]\} /\left(x^{n}-1\right)$ is generated by $\left\{x^{n} g(x)\right\}_{n \in \mathbb{N}}$. The polynomials $g(x), x g(x)$, $\ldots, x^{n-k-1} g(x)$ are all $\mathbb{F}$-linearly independent in $R$; you can see this from their leading coefficients. We need to show all higher powers are redundant.

Letting $\left(x^{n}-1\right) / g(x)=x^{n-k}+p(x)$, we have $x^{n-k} g(x)+p(x) g(x)=0$ modulo $x^{n}-1$. Since $\operatorname{deg}(p(x))<n-k$, this gives $x^{n-k}$ as an $\mathbb{F}$-linear combination of $g(x) \ldots x^{n-k-1} g(x)$, so $x^{n-k} g(x)$ is redundant. Multiplying both sides by $x$ and replacing $x^{n-k} g(x)$ with lower powers, we see $x^{n-k+1}$ is redundant as well. Inductively, the polynomials $g(x), x g(x), \ldots, x^{n-k-1} g(x)$ suffice to generate $C$.

## 4 Using fields other than $\mathbb{F}_{2}$

My next goal is to describe a machinery for using codes over arbitrary fields to construct branch groups. I think this will be easiest if we picture a few particular examples, but the general definition should be clear.

The first example is over $\mathbb{F}_{3}$. We'll show this is a 3 -group of intermidiate growth. This group is not actually new; it is isomorphic to a special case of the $p$-groups described in Grigorchuk (1986), where $\omega$ is taken as 01233210 repeating.

Example 4.1. Let $C$ be the [8,2] cyclic code over $\mathbb{F}_{3}$ with generator polynomial $x^{6}+2 x^{5}+2 x^{4}+2 x^{2}+x+1$ (which happens to divide $x^{8}-1$ ). This was chosen as the smallest cyclic code over $\mathbb{F}_{3}$ so that every code word contains a $0 . C$ is 2-dimensional over $\mathbb{F}_{3}$, so it has 9 words in it. The 8 non- 0 words correspond precisely to the 8 cyclic shifts of 11202210 .

Let $T=\mathbb{F}_{3}^{<\omega}$ be the 3-regular tree. We build a group $G_{C}$ of automorphisms of $T$ generated by the following automorphisms:

1. For each $x \in \mathbb{F}_{3}$, let $a_{x}$ be the automorphism of $T$ that adds $x$ on the first level; that is $a_{x}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\left(x_{0}+x, x_{1}, \ldots, x_{k}\right)$. This is analogous to $a$ in the grigorchuk group.
2. For each $c=c_{0}, \ldots, c_{n} \in C$, we define an automorphism $b_{c}$ analogous to $b, c$, or $d$ in the grigorchuk group; $b_{c}$ acts trivially on words not containing 2 ; otherwise $b_{c}\left(x_{0}, x_{1}, \ldots 0,1, x_{m+1}, \ldots x_{k}\right)=\left(x_{0}, x_{1}, \ldots 0,1, x_{m}+\right.$ $c_{m \% n}, \ldots x_{k}$ ), where $m$ is the level of the first 1 and $\%$ is the modulus operator.
$a_{0}$ and $b_{0 \ldots 0}$ are both the identity, so we could leave them out if desired. Here are some sample portraits of other generators


Applying this construction over non-prime fields is not any harder. Here's an example is over $\mathbb{F}_{4}$ :

Example 4.2. Let $\mathbb{F}_{4}=\{r, s, 1,0\}$, where $r$ and $s$ are the distinct roots of $x^{2}+x+1$ (I will always use this order). Let $C$ be the [7,3] cyclic code generated by 1110100 . This is the same generator as used in section 2 , but over the larger field, we have words like $r(1001110)+1(1010011)=(s 01 r r s 1)$. Again, this was chosen as the smallest code over $\mathbb{F}_{4}$ such that every code word contains a 0.

Here are portraits of $a_{s}$ and $b_{1 r r s 1 s 0}$ :


It's easy to see $a_{x} \cdot a_{y}=a_{x+y}$ and $b_{c} \cdot b_{c^{\prime}}=b_{c+c^{\prime}}$. So, much like the classical grigorchuk group, we can reduce every word in these generators to a word of the form:

$$
a_{x_{0}} b_{c_{0}} a_{x_{1}} b_{c_{1}} \cdots a_{x_{n}} b_{c_{n}} a_{x_{n+1}}
$$

where each $x_{i}$ and $c_{i}$ is non- 0 , except possibly $a_{0}$ and $a_{n+1}$.
We also have analogous rewriting rules; over $\mathbb{F}_{3}$, if $w$ represents a reduced word which stabilizes the first level, then $w$ has a portait like

or $\left(w_{2}, w_{1}, w_{0}\right)$, where $w_{0}, w_{1}$, and $w_{2}$ are smaller words. Over $\mathbb{F}_{4}$, we could similarly get $\left(w_{r}, w_{s}, w_{1}, w_{0}\right)$. As a base case, remark that this holds for $a_{x} b_{c} a_{x}^{-1}$. For example, $a_{1} b_{11202210} a_{1}^{-1}=\left(b_{12022101}, 1, a_{1}\right)$, or $a_{s} b_{s 01 r r s 1} a_{s}^{-1}=$ $\left(a_{s}, b_{1 s 01 r r s}, 1,1\right)$ in $r, s, 1,0$ order. We'll work over $\mathbb{F}_{3}$ for concise notation. The fact $C$ is cyclic guaruntees each component is another element of $G_{C}$.

We can decompose any $w$ as products of such conjugates. To see this, let
$x_{0}^{\prime}=x_{0}$ and $x_{n}^{\prime}=x_{n}+x_{n-1}^{\prime}$. Then:

$$
\begin{aligned}
w & =a_{x_{0}} b_{c_{0}} a_{x_{1}} b_{c_{1}} \cdots a_{x_{n}} b_{c_{n}} a_{x_{n+1}} \\
& =a_{x_{0}} b_{c_{0}}\left(a_{x_{0}}^{-1} a_{x_{0}}\right) a_{x_{1}} b_{c_{1}} \cdots a_{x_{n}} b_{c_{n}} a_{x_{n+1}} \\
& =\left(a_{x_{0}^{\prime}} b_{c_{0}} a_{x_{0}^{\prime}}^{-1}\right) a_{x_{1}^{\prime}} b_{c_{1}} \cdots a_{x_{n}} b_{c_{n}} a_{x_{n+1}} \\
& =\left(a_{x_{0}^{\prime}} b_{c_{0}} a_{x_{0}^{\prime}}^{-1}\right) a_{x_{1}^{\prime}} b_{c_{1}}\left(a_{x_{1}^{\prime}}^{-1} a_{x_{1}^{\prime}}\right) \cdots a_{x_{n}} b_{c_{n}} a_{x_{n+1}} \\
& =\left(a_{x_{0}^{\prime}} b_{c_{0}} a_{x_{0}^{\prime}}^{-1}\right)\left(a_{x_{1}^{\prime}} b_{c_{1}} a_{x_{1}^{\prime}}^{-1}\right) a_{x_{1}^{\prime}} \cdots a_{x_{n}} b_{c_{n}} a_{x_{n+1}} \\
& =\left(a_{x_{0}^{\prime}} b_{c_{0}} a_{x_{0}^{\prime}}^{-1}\right)\left(a_{x_{1}^{\prime}} b_{c_{1}} a_{x_{1}^{\prime}}^{-1}\right)\left(a_{x_{1}^{\prime}} \cdots\right)\left(a_{x_{n}^{\prime}} b_{c_{n}} a_{x_{n}^{\prime}}^{-1}\right) a_{x_{n+1}}
\end{aligned}
$$

The action of $w$ on the first level is given by $a_{x_{1}} \cdots a_{x_{n+1}}$, so $a_{x_{n}^{\prime}}^{-1} a_{x_{n+1}}$ is trivial if $w$ stabilizes the first level, and we can ignore the last term. Now, rewrite each conjugated $b_{c_{n}}$ as a triple, and we let $w_{2}, w_{1}$, and $w_{0}$ be the products of the respective components, omitting all 1's and combining adjacent $a$ 's or $b$ 's to get reduced words. Since each $b_{c_{n}}$ is rewritten as a $b$-generator in exactly one component, the total number of $b$-generators in $w_{0}, w_{1}$, and $w_{2}$ is less than $w$, so the rewritten words are indeed shorter.


[^0]:    ${ }^{1} \mathrm{~A}[n, k]$ linear code over $\mathbb{F}$ is a $k$-dimesional subspace of $\mathbb{F}^{n}$. I will give more details soon
    ${ }^{2}$ There's an unfortunate switch from additive to multiplicative notation, so $a \mapsto 1$ and $1 \mapsto 0$

