
1 Introduction

These notes describe a technique for using cyclic linear codes to produce highly
self-similar branch groups. These groups should be viewed as generalizations of
the first grigorchuk group, which corresponds to the [3, 2] code1 {110, 101, 011, 000}
over F2.

The grigorchuk group is generated by automorphisms of a, b, c, d of the com-
plete binary tree, where a flips the first level, and b, c, d are in the stabilizer the
first level, defined by:

b:

a c

c:

a d

d:

1 b

It’s helpful to spell out this recursion as in

a

1 1

b

a

a

1 b

c

a

1

a c

d

1

a

a d

b, c, and d all have order 2, and generate a subgroup of order 4. This is easy to

check explicitly: since all of them stabilize the subtree , we can just multiply
them pointwise. I’ll just show one example

b

a

a

1 b

c

a

1

a c

b·c

a·a

a·1

1·a b·c

so b·c

1

a

a b·c

Notice b · c satisfies the same recurrence that d does, so b · c = d.
We can identify b, c, and d with the vectors 110, 101, and 011 respectively,

based on the pattern of 1’s and a’s we see2. If we do that, the computation
b · c = d amounts to saying 110 + 101 = 011.

1A [n, k] linear code over F is a k-dimesional subspace of Fn. I will give more details soon
2There’s an unfortunate switch from additive to multiplicative notation, so a 7→ 1 and

1 7→ 0

1



2 A new example

Here is a new example I will call G, based on a cyclic [7,3] code. This is also a
group of automorphisms of the binary tree, generated by a and:

b : 1110100
c : 1101001
d : 1010011
e : 0100111
f : 1001110
g : 0011101
h : 0111010

So, for example: b:

a

a

a

1

a

1

1 b

Similarly to the grigorchuk group, b, c, d, e, f, g, h all have order 2, and generate
a subgroup of order 8, isomorphic to (Z2)3. As before, this ammounts to just
checking the codewords are closed under sums. For reasons I explain next
section, this follows from the fact x4 +x2 +x+ 1 | x8− 1 over F2. Furthermore,
as this code is closed under cyclic permutations, we also have a short recursive
presentation for the group:

b:

a c

c:

a d

d:

a e

e:

1 f

f:

a g

g:

1 h

h:

1 b

This group has many properties in common with the classical grigorchuk
group, proved in very much the same way

Theorem 2.1. G is a self replicating 2-group of intermediate growth (self repli-
cating meaning every vertex stabilizer is isomorphic to the original group)

As this proof has no new content, I’ll leave this as a special case of a later
result.

Question 1. Is the growth function of G slower than the growth of the first
grigorchuk group?

I originally constructed G hoping this would be true; 3/7 generators for G
get rewritten as 1 in the next level, as opposed to only 2/3

2



3 Cyclic codes

An [n, k] linear code C over F is a k-dimensional subspace of Fn. One refers to
elements of C as codewords. Traditionally, F is a finite field (F2n in most com-
puter applications), and C is constructed so distinct codewords differ in many
coordinates. The minimum number of coordinates where two codewords differ
is called the minimum distance of the code. As the difference of codewords
is another codeword, this is equal to the minimum number of non-0 coordinates
in a non-0 codeword, or the weight of that codeword.

Example 3.1. The subspace C = {110, 101, 011, 000} of (F2)3 is a [3,2] linear
code with minimum distance 2. A typical application of such a code is as follows:
Alice wants to send Bob a 2-bit message over a noisy channel which has a 10%
chance to flip each bit. If Alice just sends 2 bits, there is a 19% chance Bob
recieves the wrong message.
Instead, suppose Alice sends 3 bits, and Bob knows Alice will always send a
word in C. Then there is a 72.9% chance Bob receives the correct message, but
only a 2.6% chance Bob recieves the wrong message. 24.4% of the time, the
word Bob receives is not in C, and he knows an error occurred; This is often
much better than having an incorrect message.

A code is called cyclic if every cyclic shift of a codeword is also a codeword;
so, if 1110 is a codeword, then so are 1101, 1011, and 0111. Of course, these 4
vectors generate F4

2, so there are no non-trivial cyclic codes over F2 containing
1110. Interesting cyclic codes do exist; the code in example 3.1 is cyclic. I will
now describe a way to find them.

Suppose C is a cyclic code in Fn. Let’s identify Fn with the ring R =
F[x]/(xn−1), using the standard basis (1, x, . . . , xn−1). Suppose a = (a0, . . . an−1) ∈
C. Multiplying by x, we see:

x ∗ (a0, . . . an−1) = x ∗ (a0 + a1x + · · ·+ an−1x
n−1)

= a0x + a1x
2 + · · ·+ an−1x

n

= a0x + a1x
2 + · · ·+ an−1 · 1

= an−1 + a0x + a1x
2 + · · ·+ an−2x

n−1

= (an−1, a0, . . . , an−2)

So, x · a represents a cyclic shift of a, so the condition C is cyclic means C is
closed under multiplication by x. In other words, C is an ideal in R.

Ideals in R correspond to ideals in F[x] containing (xn − 1). Since F[x]
is a PID, these correspond precisely to factors of xn − 1 over F. The monic
polynomial that generates a cyclic code (as an ideal) is called it’s generator
polynomial.

Example 3.2. Let’s classify dimension 3 cyclic codes over F2. They must
correspond to factors of x3 − 1. Over F2, this factors as (x + 1)(x2 + x + 1), so
there are 4 possible gnerator polynomials:

3



1 (1) is everything, so this code is all of F3
2

x + 1 This generates the code from example 3.1. You can see this a few ways:

• x + 1|p ⇔ p(1) = 0. Over F2, this is the same as having an even
number of 1’s, which characterizes {110, 101, 011, 000}

• The next lemma will show this is a 3-1=2 dimensional subspace of
F3
2, so it must be generated by x + 1 and x2 + x.

x2 + x + 1 This code is {111, 000}. As x(x2 + x + 1) = x2 + x + 1, so there’s only
one (linear) generator

Lemma 3.1. The dimension of a cyclic code in Fn is n − k, where k is the
degree of it’s generator polynomial.

Proof. Let C be generated by the polynomial g(x). Then C = {f(x)g(x)|f ∈
F[x]}/(xn − 1) is generated by {xng(x)}n∈N. The polynomials g(x), xg(x),
. . . , xn−k−1g(x) are all F-linearly independent in R; you can see this from their
leading coefficients. We need to show all higher powers are redundant.

Letting (xn−1)/g(x) = xn−k +p(x), we have xn−kg(x)+p(x)g(x) = 0 mod-
ulo xn− 1. Since deg(p(x)) < n− k, this gives xn−k as an F-linear combination
of g(x) . . . xn−k−1g(x), so xn−kg(x) is redundant. Multiplying both sides by x
and replacing xn−kg(x) with lower powers, we see xn−k+1 is redundant as well.
Inductively, the polynomials g(x), xg(x), . . . , xn−k−1g(x) suffice to generate C.

4 Using fields other than F2

My next goal is to describe a machinery for using codes over arbitrary fields
to construct branch groups. I think this will be easiest if we picture a few
particular examples, but the general definition should be clear.

The first example is over F3. We’ll show this is a 3-group of intermidiate
growth. This group is not actually new; it is isomorphic to a special case of
the p-groups described in Grigorchuk (1986), where ω is taken as 01233210
repeating.

Example 4.1. Let C be the [8,2] cyclic code over F3 with generator polynomial
x6 + 2x5 + 2x4 + 2x2 +x+ 1 (which happens to divide x8− 1). This was chosen
as the smallest cyclic code over F3 so that every code word contains a 0. C is
2-dimensional over F3, so it has 9 words in it. The 8 non-0 words correspond
precisely to the 8 cyclic shifts of 11202210.

Let T = F<ω
3 be the 3-regular tree. We build a group GC of automorphisms

of T generated by the following automorphisms:

1. For each x ∈ F3, let ax be the automorphism of T that adds x on the first
level; that is ax(x0, x1, . . . , xn) = (x0 + x, x1, . . . , xk). This is analogous
to a in the grigorchuk group.

4



2. For each c = c0, . . . , cn ∈ C, we define an automorphism bc analogous
to b, c, or d in the grigorchuk group; bc acts trivially on words not con-
taining 2; otherwise bc(x0, x1, . . . 0, 1, xm+1, . . . xk) = (x0, x1, . . . 0, 1, xm +
cm%n, . . . xk), where m is the level of the first 1 and % is the modulus
operator.

a0 and b0...0 are both the identity, so we could leave them out if desired. Here
are some sample portraits of other generators

a1:

1 1 1

b11202210:

1 a1

1 a1

1 a2

1 1

1 a2

1 a2

1 a1

1 1 b1120221

Or, more concisely, b11202210 is

1 a1 b12022101

2 1 0 2 1
0

2 1
0

2 1
0

2 1
0

2 1
0

2 1
0

2 1
0

2 1 0

2 1 0

Applying this construction over non-prime fields is not any harder. Here’s
an example is over F4:

Example 4.2. Let F4 = {r, s, 1, 0}, where r and s are the distinct roots of
x2 +x+1 (I will always use this order). Let C be the [7, 3] cyclic code generated
by 1110100. This is the same generator as used in section 2, but over the larger
field, we have words like r(1001110) + 1(1010011) = (s01rrs1). Again, this was
chosen as the smallest code over F4 such that every code word contains a 0.

Here are portraits of as and b1rrs1s0:

5



as:

1 1 1 1

bs01rrs1:

1 1 as

1 1 1

1 1 a1

1 1 ar

1 1 ar

1 1 as

1 1 a1 bs01rrs1

Concise version: bs01rrs1

1 1 as b1s01rrs

r s 1 0 r s 1
0

r s 1
0

r s 1
0

r s 1
0

r s 1
0

r s 1
0

r s 1 0

r s 1 0

It’s easy to see ax · ay = ax+y and bc · bc′ = bc+c′ . So, much like the classical
grigorchuk group, we can reduce every word in these generators to a word of
the form:

ax0
bc0ax1

bc1 · · · axn
bcnaxn+1

where each xi and ci is non-0, except possibly a0 and an+1.
We also have analogous rewriting rules; over F3, if w represents a reduced

word which stabilizes the first level, then w has a portait like w

w2 w1 w0

2 1 0

,

or (w2, w1, w0), where w0, w1, and w2 are smaller words. Over F4, we could
similarly get (wr, ws, w1, w0) . As a base case, remark that this holds for
axbca

−1
x . For example, a1b11202210a

−1
1 = (b12022101, 1, a1), or asbs01rrs1a

−1
s =

(as, b1s01rrs, 1, 1) in r, s, 1, 0 order. We’ll work over F3 for concise notation. The
fact C is cyclic guaruntees each component is another element of GC .

We can decompose any w as products of such conjugates. To see this, let

6



x′0 = x0 and x′n = xn + x′n−1. Then:

w = ax0
bc0ax1

bc1 · · · axn
bcnaxn+1

= ax0bc0(a−1x0
ax0)ax1bc1 · · · axnbcnaxn+1

= (ax′
0
bc0a

−1
x′
0

)ax′
1
bc1 · · · axnbcnaxn+1

= (ax′
0
bc0a

−1
x′
0

)ax′
1
bc1(a−1x′

1
ax′

1
) · · · axn

bcnaxn+1

= (ax′
0
bc0a

−1
x′
0

)(ax′
1
bc1a

−1
x′
1

)ax′
1
· · · axn

bcnaxn+1

= (ax′
0
bc0a

−1
x′
0

)(ax′
1
bc1a

−1
x′
1

)(ax′
1
· · · )(ax′

n
bcna

−1
x′
n

)axn+1

The action of w on the first level is given by ax1 · · · axn+1 , so a−1x′
n
axn+1 is trivial

if w stabilizes the first level, and we can ignore the last term. Now, rewrite
each conjugated bcn as a triple, and we let w2, w1, and w0 be the products of
the respective components, omitting all 1’s and combining adjacent a’s or b’s to
get reduced words. Since each bcn is rewritten as a b-generator in exactly one
component, the total number of b-generators in w0, w1, and w2 is less than w,
so the rewritten words are indeed shorter.

7


