ON THE GEOMETRY OF A FAKE PROJECTIVE PLANE WITH 21 AUTOMORPHISMS

LEV BORISOV, MATTIE JI, YANXIN LI, AND SARGAM MONDAL

Abstract

A fake projective plane is a complex surface with the same Betti numbers as $\mathbb{C} P^{2}$ but not biholomorphic to it. We study the fake projective plane $\mathbb{P}_{\text {fake }}^{2}=\left(a=7, p=2, \emptyset, D_{3} 2_{7}\right)$ in the CartwrightSteger classification. In this paper, we exploit the large symmetries given by $\operatorname{Aut}\left(\mathbb{P}_{\text {fake }}^{2}\right)=C_{7} \rtimes C_{3}$ to construct an embedding of this surface into $\mathbb{C} P^{5}$ as a system of 56 sextics with coefficients in $\mathbb{Q}(\sqrt{-7})$. For each torsion line bundle $T \in \operatorname{Pic}\left(\mathbb{P}_{\text {fake }}^{2}\right)$, we also compute and study the linear systems $|n H+T|$ with small n, where H is an ample generator of the Néron-Severi group.

1. Introduction

A question by Severi asked whether there exists a complex surface homeomorphic to $\mathbb{C} P^{2}$ but not biholomorphic to it. A classical corollary in Yau's proof of the Calabi-Yau conjecture Yau77] answered this question in the negative by showing that any complex surface homotopic to $\mathbb{C} P^{2}$ must also be biholomorphic to $\mathbb{C} P^{2}$. This prompted Mumford Mum79 to construct the first example of a complex surface with the same Betti numbers as $\mathbb{C} P^{2}$ but not biholomorphic to it. These surfaces are now called fake projective planes (FPPs for short).

Fake projective planes have ample canonical bundle and hence are algebraic surfaces of general type by Chow's Theorem. They serve as canonical examples for complex surfaces of general type with the smallest Euler characteristics. Studying their geometry and classification is a subject of interest for many algebraic geometers.

For a fake projective plane X, the Hodge Theorem implies that $H^{j}(X, \mathbb{C})=\bigoplus_{p+q=j} H^{p, q}(X)$. It then follows from the Hodge symmetry that the Hodge numbers of X must be

$$
h^{p, q}(X)=\left\{\begin{array}{l}
1, \text { if }(p, q) \in\{(0,0),(1,1),(2,2)\} \\
0, \text { otherwise }
\end{array}\right.
$$

Let c_{1} and c_{2} be the first and second Chern numbers of X respectively, Noether's formula asserts that

$$
\frac{c_{1}^{2}+c_{2}}{12}=\chi(0)=\sum_{j=0}^{2}(-1)^{j} h^{0, j}(X)=1
$$

Recalling that c_{2} is equal to the topological Euler characteristics of X, it then follows that $c_{1}^{2}=3 c_{2}$ and hence the Bogomolov-Miyaoka-Yau inequality is an equality. A classical result in Yau77 asserts that this equality is true if and only if X is the quotient of the complex 2 -ball $\mathbb{B}^{2}:=\left\{\left.(z, w) \in \mathbb{C}^{2}| | z\right|^{2}+|w|^{2}<1\right\}$ by a torsion-free co-compact discrete subgroup of $P U(2,1)$.

Much of the work in classifying all fake projective planes has been done by analyzing these quotients. In the same paper by Mumford Mum79, he noted that there exist only finitely many fake projective planes up to isomorphism. This is a consequence of Weil's result Wei60 that discrete co-compact subgroups of $P U(2,1)$ are rigid. Later on, Prasad and Yeung PY07 showed that all fake projective planes must fall into one of 28 distinct non-empty classes. Finally, Cartwright and Steger CS10 obtained a complete classification of 50 conjugate pairs of fake projective planes into the aforementioned 28 different classes. For a comprehensive survey on the history of classifying all fake projective planes, we refer the reader to the expository paper by Yeung in Yeu08.

[^0]In this paper, we will study the fake projective plane $\mathbb{P}_{\text {fake }}^{2}:=\left(a=7, p=2, \emptyset, D_{3} 2_{7}\right)$ in the CartwrightSteger classification. It is one of the only 3 pairs of fake projective planes whose automorphism group has the largest cardinality, being the unique non-abelian semi-direct product $C_{7} \rtimes C_{3}$. The other two pairs are respectively the fake projective plane $\left(C 20, p=2, \emptyset, D_{3} 2_{7}\right)$ and Keum's fake projective plane Keu06] ($a=7, p=2,7, D_{3} 2_{7}$).

It is known that there exists a unique ample divisor class H on $\mathbb{P}_{\text {fake }}^{2}$ such that its canonical class K is equal to $3 H$, and the Picard group of $\mathbb{P}_{\text {fake }}^{2}$ is given by $\operatorname{Pic}\left(\mathbb{P}_{\text {fake }}^{2}\right) \cong \mathbb{Z} H \oplus(\mathbb{Z} / 2 \mathbb{Z})^{4}$. In BK20], Borisov and Keum produced an explicit construction of the $\mathbb{P}_{\text {fake }}^{2}$ in $\mathbb{C} P^{9}$ as 84 cubic equations in 10 variables using the 10 global sections of $H^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 6 H\right)$.

Our first goal is to study how the automorphism group $\operatorname{Aut}\left(\mathbb{P}_{\text {fake }}^{2}\right) \cong C_{7} \rtimes C_{3}$ of $\mathbb{P}_{\text {fake }}^{2}$ acts on Pic $\left(\mathbb{P}_{\text {fake }}^{2}\right)$. Clearly any automorphism has to fix H, so the question amounts to investigating what happens on the torsion subgroup. For each non-trivial torsion element $T \in \operatorname{Pic}\left(\mathbb{P}_{\text {fake }}^{2}\right)$, we will compute explicit representatives of $3 H+T$ as non-reduced cuts in $6 H$ in Section 2. We focus on three torsion classes - $D, D_{1}, D+D_{1}$ - which are representatives of the C_{7} orbits of the automorphism action.

Another question we are interested in is how the linear systems $|n H+T|$ behave for $n \leq 5$ and torsion line bundles $T \in \operatorname{Pic}\left(\mathbb{P}_{\text {fake }}^{2}\right)$. This is because as n increases, the expansion in dimensions tends to trivialize phenomena in lower dimensions (for example, the Kodaira Vanishing Theorem becomes applicable for $n \geq 4$). Specifically, we show that

Theorem 1.1. On the fake projective plane $\mathbb{P}_{\text {fake }}^{2}$ and for torsion line bundle $T \in \operatorname{Pic}\left(\mathbb{P}_{\text {fake }}^{2}\right)$,
(1) $h^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 2 H+T\right)=0$.
(2) $4 H+T$ is basepoint free if and only if T is non-trivial.
(3) $5 H+D$ is very ample, but $5 H$ is not very ample.

Note that the case of $T \in\{0, D\}$ in Theorem 1.1(1) is a consequence of Theorem 5.3 in GKS23. Our contribution is for the other 14 torsion line bundles. As a consequence (or rather in the proof of) Theorem 1.1(3), we also produce an explicit embedding of $\mathbb{P}_{\text {fake }}^{2}$ as 56 sextics in $\mathbb{C} P^{5}$ with coefficients in $\mathbb{Q}(\sqrt{-7})$.

For all fake projective planes X with known explicit equations (see BK20, Bor23, BF20], and BBF22]), their embeddings were constructed in $6 H_{X}$, where H_{X} is the unique ample divisor class on X such that $3 H_{X}=K_{X}$ the canonical divisor class. In [BL23], the authors were able to further embed Keum's fake projective plane with $5 H_{X}$. Whether or not $6 H_{X}$ is very ample for all fake projective planes X is still an open question, but Theorem [1.1(3) shows that a similar conjecture is false for the case of $5 H_{X}$.

A common feature in the research on fake projective planes is liberal use of mathematical computing. The proof of Theorem 1.1] depends heavily on the use of the computer algebra systems Mathematica Inc, Magma BCP97, and Macaulay2 GS]. Our code repository BJLM] accompanying this paper is available on GitHub and on our webpage.
1.1. Outline. In Section 2, we first describe a method of computing $3 H+D, 3 H+D_{1}, 3 H+D+D_{1}$ and determining the group relations of the torsion divisors. We then find the explicit quadratic polynomials vanishing on $3 H+T$ for each torsion divisor T. In Section 3, we compute explicit representatives of $4 H$ and prove the "only if" of Theorem 1.1(2). In Section 4, we use the explicit representatives of $|4 H|$ to compute explicit maps given by sections of $5 H$ and $5 H+D$ into $\mathbb{C} P^{5}$ to prove Theorem 1.1(3), and we also compute explicit equations for the zero locus of the C_{7}-equivariant sections of $5 H$. In Section 5, we use the sections of $5 H$ to compute explicit equations for the zero locus of the sections $4 H+T$ for $T \neq 0$ a torsion line bundle. This proves the "if" direction of Theorem 1.1(2). In the same section, we also use this result to prove Theorem 1.1(1).

Acknowledgements. This research was conducted while the second author was participating during the 2023 DIMACS REU program at the Rutgers University Department of Mathematics, mentored by the first author. We are grateful to Lazaros Gallos, Kristen Hendricks, and the Rutgers University DIMACS for organizing the REU program and making this project possible.

2. Computing torsion divisors with $3 H+T$

In this section, we construct explicit non-reduced cuts representing $3 H+T$ for each non-trivial torsion line bundle $T \in \operatorname{Pic}\left(\mathbb{P}_{\text {fake }}^{2}\right)$. This is done in two steps. We first find the cuts in a finite field with the code $3 H$-Reduction.txt in our code repository BJLM]. We then lift the solutions back to $\mathbb{Q}(\sqrt{-7})$ in the first part of the file 3 H -Torsion.nb.

In addition, we also compute the group relations between the explicit representatives we found. Finally, we also compute quadratic polynomials vanishing on each curve in the class of $3 H+T$ in the embedding of $\mathbb{P}_{\text {fake }}^{2}$ in $\mathbb{C} P^{9}$. These calculations are done in the remainder of 3 H-Torsion.nb.
2.1. Construction of the non-reduced cuts. We would like to construct the torsion classes of the Picard group. Suppose T is a non-trivial torsion class, then Theorem 2.2 of GKS23 asserts that $H^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 3 H+T\right)$ is one-dimensional. Suppose we take generator $\alpha \in H^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 3 H+T\right)$, then since all non-trivial torsions of the Picard group have order 2, we have $\alpha^{\otimes 2} \in H^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 6 H\right)$. Thus, we would like to construct $3 H+T$ from elements in $H^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 6 H\right)$, whose zero is an nonreduced curve.

We can do this by examining how the automorphism group of $\mathbb{P}_{\text {fake }}^{2}$ interacts with the torsion classes. In BK20, the automorphism group acts on the homogeneous coordinates of $\mathbb{C} P^{9}$ as follows:

$$
\begin{align*}
& g_{3}\left(U_{0}: U_{1}: U_{2}: U_{3}: U_{4}: U_{5}: U_{6}: U_{7}: U_{8}: U_{9}\right)=\left(U_{0}: U_{2}: U_{3}: U_{1}: U_{5}: U_{6}: U_{4}: U_{8}: U_{9}: U_{7}\right) \tag{1}\\
& g_{7}\left(U_{0}: U_{1}: U_{2}: U_{3}: U_{4}: U_{5}: U_{6}: U_{7}: U_{8}: U_{9}\right) \\
& \quad=\left(U_{0}: \zeta^{6} U_{1}: \zeta^{5} U_{2}: \zeta^{3} U_{3}: \zeta^{1} U_{4}: \zeta^{2} U_{5}: \zeta^{4} U_{6}: \zeta^{1} U_{7}: \zeta^{2} U_{8}: \zeta^{4} U_{9}\right),
\end{align*}
$$

where g_{3} and g_{7} are generators of C_{3} and C_{7} respectively and ζ is the 7 -th root of unity $\exp (2 \pi i / 7)$. We first observe that

Lemma 2.1. There are at least 3 non-trivial torsion classes of $\operatorname{Pic}\left(\mathbb{P}_{\text {fake }}^{2}\right)$ that are invariant under the C_{3} action.

Proof of Lemma 2.1. Up to scaling, clearly U_{0} in $6 H$ is fixed by the entire automorphism group, so there must exist some non-trivial torsion element D such that $3 H+D$ corresponds to U_{0} as a non-reduced curve in $6 H$. By Maschke's Theorem, the one dimension given by D splits off and we are left with a three dimensional representation of the automorphism group. There are 7 non-trivial elements in the three dimensional representation, so there must exist some element here fixed by the C_{3} action.

Lemma 2.1] suggests that we should be searching for C_{3}-invariant curves of the form

$$
\begin{equation*}
U_{0}+a_{1}\left(U_{1}+U_{2}+U_{3}\right)+a_{2}\left(U_{4}+U_{5}+U_{6}\right)+a_{3}\left(U_{7}+U_{8}+U_{9}\right) \tag{3}
\end{equation*}
$$

Subsequently, we obtained the coefficients first in finite fields in the file 3H-Reduction.txt. We searched for primes p for which -7 is a square in \mathbb{F}_{p}, and then found using Magma that the smallest such prime for which the reduction of the scheme preserves the Hilbert polynomial is 11. Then, we shuffled through all possible a_{i} 's in \mathbb{F}_{11} to solve for the triples that produce unreduced schemes. We got three solutions, $(0,0,0),(7,0,0)$ and $(8,7,7)$. The first one corresponds to $3 H+D$ as it is fixed by the action of $\operatorname{Aut}\left(\mathbb{P}_{\text {fake }}^{2}\right)$.

Next, we lifted the coefficients back to $\mathbb{Q}(\sqrt{-7})$ in 3 H-Torsion.nb through the following procedure. We obtained several points on the last two curves. Suppose one of them is $x=\left[x_{0}: \ldots: x_{9}\right]$. We can set without loss of generality $x_{0}=1$. Then we consider 2 tangent vectors of the form $v=\left(v_{0}, v_{1}, \ldots, v_{9}\right)$. We set similarly $v_{0}=0$, and then $v_{1}=1, v_{2}=0$ for one and $v_{1}=0, v_{2}=1$ for the other to make them orthogonal. Then we needed to make sure the tangent vectors stay in the $T_{x} \mathbb{P}_{\text {fake }}^{2}$, so we substituted in $x_{i}+v_{i} t$'s for U_{i} 's for each
of the 84 equations and the linear curve we obtained, and solved for conditions such that the coefficient of t is zero, which means that the vector is orthogonal to the gradient of all these equations.

We then lifted the coefficients to $\bmod 11^{2}$. We substituted $\sqrt{-7}$ with appropriate values, and adjusted the linear cuts by adding $11\left(a_{1}^{\prime}\left(U_{1}+U_{2}+U_{3}\right)+a_{2}^{\prime}\left(U_{4}+U_{5}+U_{6}\right)+a_{3}^{\prime}\left(U_{7}+U_{8}+U_{9}\right)\right)$, for some unknown $\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right)$, which ensures that it agrees with the original cuts $\bmod 11$, and similarly the points on these cuts and the tangent vectors at these points. Then we solved for the same equations modulo 11 to obtain the unknown coefficients modulo 11^{2}. It is clear that we can go through the same process with the new data to consecutively lift them to modulo any 11^{d}. In the end we obtained the coefficients for the cuts modulo 11^{21}. From these we recover the original coefficients in $\mathbb{Q}(\sqrt{-7})$ as follows. If an element $a \in \mathbb{Q}(\sqrt{-7})$ satisfies an integer relation $c_{1}+c_{2} \sqrt{-7}+c_{3} a=0$, it leads to $c_{1}+c_{2}[\sqrt{-7}]+c_{3}[a]=0$ for the corresponding 11-adic numbers. If we have approximations $[a]_{11^{21}}$ and $[\sqrt{-7}]_{11^{21}}$ of $[a]$ and $[\sqrt{-7}]$ respectively, then we get an integer relation

$$
c_{1}+c_{2}[\sqrt{-7}]_{11^{21}}+c_{3}[a]_{11^{21}}+c_{4} 11^{21}=0
$$

If c_{1}, c_{2} and c_{3} are small, then the above relation can be recovered by using the lattice reduction algorithm to find equations of small norm in the lattice of integer relations on $1,[\sqrt{-7}]_{11^{21}},[a]_{11^{21}}$ and 11^{21}.

In this way, we obtained the two cuts to be

$$
\begin{align*}
& 3 H+D_{1}:=U_{0}+\frac{1}{2}(1+\sqrt{-7})\left(U_{1}+U_{2}+U_{3}\right) \tag{4}\\
& 3 H+D_{8}:=U_{0}+(-5+\sqrt{-7})\left(U_{1}+U_{2}+U_{3}\right)+(4-4 \sqrt{-7})\left(U_{4}+U_{5}+U_{6}\right)-4\left(U_{7}+U_{8}+U_{9}\right)
\end{align*}
$$

We computed points on these cuts to see that they are nonreduced curves, so they are indeed the cuts we were looking for. Notice that $D_{8}=D+D_{1}$, and the three torsion classes D, D_{1}, and D_{8} are the orbit representatives of the C_{7} action on the non-trivial torsion classes of $\operatorname{Pic}\left(\mathbb{P}_{\text {fake }}^{2}\right)$. Let's also define $D_{2}, D_{3}, \ldots, D_{7}$ and $D_{9}, D_{10}, \ldots, D_{14}$ as the successive C_{7}-translates of D_{1} and D_{8} respectively using Equation (2).
2.2. Determination of the group relations. We would like to now determine the group relations of the cuts we computed (and by extension, the torsion line bundles they corresponds to) in the torsion of the Picard group of $\mathbb{P}_{\text {fake }}^{2}$.

Specifically, we want to determine when a triple of non-trivial torsion line bundles $\left(L_{1}, L_{2}, L_{3}\right)$ satisfies $L_{1}+L_{2}+L_{3}=0$. First we note this can only happen when all three line bundles are distinct. Let $L_{4}=$ $L_{1}+L_{2}+L_{3}$, and consider sections of $12 H$ which are zero on the curves in the class $3 H+L_{1}, 3 H+L_{2}, 3 H+L_{3}$. This space is isomorphic to the space of sections on $3 H+L_{4}$ and is therefore zero iff L_{4} is zero. We can find these sections explicitly by computing random points on $3 H+L_{1}, \ldots, 3 H+L_{3}$ and looking for quadratic polynomials vanishing on these random points. This is realized by constructing a matrix whose rows are the evaluations the $h^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 12 H\right)=55$ quadratic monomials on the aforementioned random points. Recall that for a torsion line bundle $T-h^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 3 H+T\right)=0$ if and only if T is trivial, hence this matrix has full rank if and only if $L_{1}+L_{2}+L_{3}=0$.

We computed the rank of these linear systems for every triple in the 15 non-trivial torsion classes to determine the group laws in terms of these notations. The complete table is in the file 3H-Torsion.nb, here we show how D_{1}, \ldots, D_{7} can be written in terms of the basis $\left\{D_{1}, D_{2}, D_{3}\right\}$:

$$
\begin{equation*}
D_{4}=D_{1}+D_{2}, \quad D_{5}=D_{2}+D_{3}, \quad D_{6}=D_{1}+D_{2}+D_{3}, \quad D_{7}=D_{1}+D_{3} \tag{5}
\end{equation*}
$$

2.3. Quadratics vanishing on $3 H+T$. In this section, we will describe how to construct $|3 H+T|$ for each non-trivial torsion T. While we realized sections of $3 H+T$ as non-reduced cuts in $6 H$, taking random linear cuts and computing its intersection with these non-reduced cuts would still produce points on $3 H+T$. Hence, we can repeat a similar procedure as in Section 2.2,

In particular, for each of $3 H+D, 3 H+D_{1}, 3 H+D+D_{1}$, we computed numerically points on each of the non-reduced cuts given and solved for the coefficients of quadratics in U_{0}, \ldots, U_{9} vanishing on them. We can populate the quadratics on the other twelve $3 H+D_{i}$'s by successively applying the C_{7} action onto
the quadratics computed already. For each $3 H+T$, we find 28 quadratics vanishing on its curve, which is expected as $\operatorname{dim}_{\mathbb{C}} H^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 12 H-(3 H+T)\right)=28$.

3. Computing $4 H$

In this section, we compute the linear system $|4 H|$. This will prove a proof for the "only if" direction of Theorem 1.1(2). We follow the general method of BL23, Section 3.2] by Borisov and Lihn, where they computed the linear system $|4 H|$ on Keum's fake projective plane. Our specific constructions are realized in the file $4 \mathrm{H} . \mathrm{nb}$ in our code repository [BJLM].

By the Riemann-Roch and the Kodaira vanishing theorems, we have $\operatorname{dim}_{\mathbb{C}} H^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 4 H\right)=3$. The C_{7} action on $H^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 4 H\right)$ splits it into three one-dimensional C_{7}-eigenspaces, which, by the holomorphic Lefschetz fixed-point formula, have eigenvalues ξ^{3}, ξ^{6}, and ξ^{5} respectively. Let r_{3}, r_{6}, and r_{5} be the sections generating each eigenspace. There's also a C_{3} action that permutes $r_{3} \rightarrow r_{6} \rightarrow r_{5} \rightarrow r_{3}$.

Let's define $s_{i}=r_{i}^{\otimes 3}$ for $i=3,6,5$ and $d=r_{3} \otimes r_{6} \otimes r_{5}$. Note that $s_{3}, s_{6}, s_{5}, d \in H^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 12 H\right)$ and thus can be represented as quadratics in U_{0}, \ldots, U_{9}. Since s_{3} has C_{7} weight $3 \times 3 \equiv 2(\bmod 7)$ and d has weight $3+5+6 \equiv 0(\bmod 7)$ and is C_{3} invariant, we can write s_{3} and d as

$$
\begin{align*}
s_{3} & :=b_{5} U_{1} U_{3}+b_{3} U_{4}^{2}+b_{8} U_{0} U_{5}+b_{4} U_{2} U_{6}+b_{2} U_{4} U_{7}+b_{1} U_{7}^{2}+b_{7} U_{0} U_{8}+b_{6} U_{2} U_{9} \\
d & :=e_{1} U_{0}^{2}+e_{2}\left(U_{1} U_{4}+U_{2} U_{5}+U_{3} U_{6}\right)+e_{3}\left(U_{1} U_{7}+U_{2} U_{8}+U_{3} U_{9}\right) \tag{6}
\end{align*}
$$

Note that s_{5} and s_{6} may be obtained as C_{3}-translates of s_{3}.
Our goal is then to solve for s_{3} and d explicitly. Then we could solve for $\left\{s_{3}=d=0\right\}$ to obtain the section r_{3} and use the C_{3} action to find r_{6} and r_{5}.
3.1. Solving for s_{3} and d. The overall idea is that we want to solve for the sextic equation $s_{3} s_{5} s_{6}-d^{3}=0$. We can do this by computing random points on $\mathbb{P}_{\text {fake }}^{2}$ with high accuracy and evaluating the expression $s_{3} s_{5} s_{6}-d^{3}$ on these points. This will produce relations on the coefficients b_{1}, \ldots, b_{8} and e_{1}, e_{2}, e_{3}, which we can then solve in the Magma file 4 H -Quadratic.txt.

However, the process above may take quite long computationally. To reduce the run-time, we also compute some additional constraints on the coefficients before passing it down to the $4 \mathrm{H}-\mathrm{Quadratic} . \mathrm{txt}$. The additional constraints are calculated as follows:

- We observe that there are three C_{7} fixed points on $\mathbb{P}_{\text {fake }}^{2}$ given by

$$
\begin{align*}
& p_{1}:=[0: 0: 0: 0: 0: 0: 0: 1: 0: 0], \quad p_{2}:=[0: 0: 0: 0: 0: 0: 0: 0: 1: 0], \\
& p_{3}:=[0: 0: 0: 0: 0: 0: 0: 0: 0: 1] \tag{7}
\end{align*}
$$

We note that p_{2} must be in the curve $\left\{r_{3}=0\right\}$. This is because the only quadratic monomial that does not vanish on p_{2} is U_{8}^{2}, which has C_{7} weight $4(\bmod 7)$. On the other hand, we observe that $s_{3}=r_{3}^{3}$ has weight $2(\bmod 7)$ and thus does not have a term on U_{8}^{2}, so r_{3} must vanish on p_{2}. Similarly, we also have that $p_{3} \in\left\{r_{3}=0\right\}$ as U_{9}^{2} has weight $1(\bmod 7)$.

- It follows that p_{2}, p_{3} vanish on s_{3} up to multiplicity 3 . We then compute the order 3 formal neighborhoods of p_{2} and p_{3} respectively (in practice, we only needed them up to order 2). Then we solve for the conditions of s_{3} being identically zero on the formal neighborhoods of p_{2} and p_{3} up to order 2 . This reduces the number of independent coefficients on s_{3} from 8 to 6 .

After solving the relations on the remaining 9 coefficients produced by the random points, we obtain the following solutions:

$$
\begin{align*}
s_{3} & =\frac{1}{8}\left(\frac{1}{29}(1-27 \sqrt{-7}) U_{1} U_{3}+\frac{4}{29}(101-\sqrt{-7}) U_{4}^{2}+\frac{8}{29}(15+\sqrt{-7}) U_{0} U_{5}+\frac{8}{29}(1+2 \sqrt{-7}) U_{2} U_{6}\right. \\
& \left.+8 U_{4} U_{7}-4 U_{0} U_{8}+\frac{1}{29}(101-\sqrt{-7}) U_{0} U_{8}+\frac{1}{58}(101-\sqrt{-7}) U_{2} U_{9}+\frac{1}{58} \sqrt{-7}(101-\sqrt{-7}) U_{2} U_{9}\right) \tag{8}
\end{align*}
$$

$$
\begin{equation*}
d=\frac{1}{812}\left((35-17 \sqrt{-7}) U_{0}^{2}+(70-34 \sqrt{-7})\left(U_{1} U_{4}+U_{2} U_{5}+U_{3} U_{6}\right)+(21+13 \sqrt{-7})\left(U_{1} U_{7}+U_{2} U_{8}+U_{3} U_{9}\right)\right) \tag{9}
\end{equation*}
$$

Remark. While the authors of [BL23] solved the system $s_{3} s_{5} s_{6}-d^{3}=0$ using a finite field search and lifting the coefficients back to $\mathbb{Q}(\sqrt{-7})$, we instead solve for the irreducible components of the ideal formed by the equations in the file 4 H -Quadratic.txt with Magma directly and found the exact solutions in $\mathbb{Q}(\sqrt{-7})$ within a reasonable time.
3.2. Solving for r_{3}. We find random points on r_{3} by computing random points on $\left\{s_{3}=d=0\right\}$ with high accuracy. We then solve for the systems of quadratics vanishing on r_{3} and obtained $\operatorname{dim}_{\mathbb{C}} H^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 12 H-\right.$ $4 H)=21$ equations. The equations can be found in Equations/4H_one_section.txt. Now we can give a proof that $4 H+0$ is not basepoint free.

Proof of "only if" direction of Theorem 1.1(3). Observe that the equations in Equations/4H_one_section.txt have no monomials of the form U_{7}^{2}, U_{8}^{2}, or U_{9}^{2}. This means that $p_{1}, p_{2}, p_{3} \in\left\{r_{3}=0\right\}$. The C_{3} action on $\mathbb{P}_{\text {fake }}^{2}$ permutes $p_{1} \rightarrow p_{2} \rightarrow p_{3} \rightarrow p_{1}$, so it follows that r_{5} and r_{6} also vanish on these 3 points.

4. Computing $5 H+D$ and $5 H$

In this section, we prove Theorem 1.1(3). For $5 H+D$, we will construct an embedding of $\mathbb{P}_{\text {fake }}^{2}$ in $\mathbb{C} P^{5}$ given by its sections to show it is very ample in Section 4.1. This simplifies the embedding of $\mathbb{P}_{\text {fake }}^{2}$ in BK20] dimension wise. For $5 H$, we will construct the image of $\mathbb{P}_{\text {fake }}^{2}$ under its map and show the image is singular in Section 4.2. We will also verify that $5 H$ is basepoint free after we compute the quadratics vanishing on the global sections of $5 H$ in Section 4.3. Most of the relevant computations are laid out in the Mathematica file 5H-Torsion.nb in our code repository [BJLM] except for the check that the sections of $5 H$ do not have any common zeros, which is done in the Magma file 5 H -intersection.txt.
4.1. For $5 H+D$. With the computations of $3 H+D$ in Section 2 and $4 H$ in Section 3, we can now find six linearly independent sections on $5 H+D$. Observe that $12 H=(5 H+D)+(3 H+D)+4 H$, so we can compute for linear combination of quadratic monomials vanishing on random points from both $4 H$ and $3 H+D$. This produced 6 quadratics in variables U_{0}, \ldots, U_{9} that represent the 6 global sections of $5 H+D$.

These 6 quadratics produce a map $\mathbb{P}_{\text {fake }}^{2} \rightarrow \mathbb{C} P^{5}$, so we can enumerate random points of the image of $\mathbb{P}_{\text {fake }}^{2}$ in $\mathbb{C} P^{5}$. We then solved for sextic equations in terms of the 6 quadratic polynomials and found 56 sextics with coefficients in $\mathbb{Q}(\sqrt{-7})$. To check that this is indeed an embedding, we follow the verification process carried out in BL23. The relevant verification files are in the folder Verification/5H+D.
4.2. For $5 H$. Because $h^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 3 H\right)=0$, we can't use the method in Section 4.1 to find the sections of $5 H$. Instead, we observe that $30 H=5 H+4 H+\sum_{i=1}^{7}\left(3 H+D_{i}\right)$, so we can look for linear combinations of quintic monomials vanishing on random points enumerated on $4 H, 3 H+D_{1}, \ldots, 3 H+D_{7}$. This produced 6 quadratics in variables U_{0}, \ldots, U_{9} which we will name Z_{1}, \ldots, Z_{6}.

Let X denote the image of $\mathbb{P}_{\text {fake }}^{2}$ in $\mathbb{C} P^{5}$ given by Z_{1}, \ldots, Z_{6}. We can enumerate random points on X and solve for sextics in variables Z_{1}, \ldots, Z_{6} that vanish on the image. This produced 59 (as opposed to 56) sextic equations with coefficients in $\mathbb{Q}(\sqrt{-7})$. Moreover, the Hilbert polynomial of the quotient of the polynomial ring in six variables by the ideal generated by the above 59 sextics is $p(n)=\frac{1}{2}(5 n-1)(5 n-2)-3$, which is less than the dimension $\frac{1}{2}(5 n-1)(5 n-2)$ of $H^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 5 n H\right)$. By [Har77, Exercise II.5.9(b)], this implies that $5 H$ is not very ample.

We investigated the image X of $\mathbb{P}_{\text {fake }}^{2}$ under this map further. We checked that there were no higher degree equations besides the sextic equations calculated for X, because these 59 equations generate a prime ideal, see Magma file 5 H -is-prime.txt. Furthermore, we checked that X is singular at the following 3 points:

$$
\begin{equation*}
q_{1}:=[1: 0: 0: 0: 0: 0], q_{2}:=[0: 1: 0: 0: 0: 0], q_{3}:=[0: 0: 0: 1: 0: 0] \tag{10}
\end{equation*}
$$

by computing the rank of the Jacobian matrix at these points.

Remark. We suspect that q_{1}, q_{2}, and q_{3} are the only singular points of X and that X is not normal at these points.
4.3. Quadratics vanishing on $5 H$. For each quintic equation corresponding to each Z_{i}, we can find random roots of the quintic equation by computing the intersection of the quintic equation with random linear cuts. Out of the roots we computed, we only keep the points that are non-zero on the equations of $4 H$ and $3 H+D_{i}$ for $i=1, \ldots, 7$. The points left will then be on the section Z_{i}.

We then solve for quadratics in $U_{0}, . ., U_{9}$ vanishing on the remaining points and finds $h^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 12 H-\right.$ $5 H)=15$ quadratics equations defining Z_{i}. We also check in the file 5 H -intersection.txt that all 90 quadratics do not have any common zeros, so $5 H$ is indeed basepoint free.

5. Computing $4 H+T$

In this section, we use the results of Section 4.3 to compute quadratics vanishing on sections of $4 H+T$ for all non-trivial torsion classes $T \in \operatorname{Pic}\left(\mathbb{P}_{\text {fake }}^{2}\right)$. These computations will also be used to prove Theorem 1.1(1) and the "if" direction of Theorem[1.1(2). The relevant computations for the quadratics vanishing on $4 H+T$ and the proof of Theorem 1.1(1) can be found in the Mathematica file $4 \mathrm{H}-\mathrm{Torsion} . \mathrm{nb}$ from our code repository BJLM]. The checks that $4 H+T$ is basepoint free are in the Magma file 4 H -Torsion-intersection.txt.

It suffices for us to compute the quadratics on $4 H+D, 4 H+D_{1}$, and $4 H+D_{8}$, as the rest can be generated by the C_{7} action. For $L \in\left\{D, D_{1}, D_{8}\right\}$, we observe that $12 H=(4 H+L)+(3 H+L)+5 H$. We can compute the quadratics vanishing on $4 H+L$ in two steps:
(1) First, we can find the 3 sections of $4 H+L$ as linear combinations of quadratics in U_{0}, \ldots, U_{9} vanishing on random points of $3 H+L$ and one section of $5 H$ (in our case, we chose Z_{2}).
(2) These sections are technically quadratic polynomials. Since we have computed explicit equations on sections of $5 H$ in Section 4.3 and of $3 H+L$ in Section 2.3, we can take random cuts on each quadratic polynomials, only keeping the points that are non-zero on these equations. The remaining points will be random points on the sections of $4 H+L$ as divisors. We can then find $h^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 12 H-(4 H+L)\right)=$ 21 quadratics for each section.

Note that we also only need to do this on one section of $4 H+L$, as the other two can be populated by the C_{3} action. Now we will finish the proofs of Theorem 1.1 .

Proof of "if" direction of Theorem 1.1(2). It suffices for us to check this for $4 H+D, 4 H+D_{1}$, and $4 H+D_{8}$. Since we have computed the quadratics vanishing on each already, we can simply check that they don't have common zeros in the Magma file 4 H -Torsion-intersection.txt.
Proof of Theorem 1.1(1). The case for $2 H$ and $2 H+D$ is implied by Theorem 5.5 of [GKS23]. For the other 14 torison classes, it suffices for us to check this on $2 H+D_{1}$ and $2 H+D_{8}$ because of the C_{7} action.

If $h^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 2 H+D_{1}\right) \neq 0$, then let $\alpha \in H^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 2 H+D_{1}\right)$ be some non-trivial section. Consider the section $\alpha \otimes r \in H^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 6 H\right)$ where r is any non-trivial section of $H^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 4 H+D_{1}\right)$. Since the basis of $H^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 6 H\right)$ is given by U_{0}, \ldots, U_{9}, this means that $\alpha \otimes r$ lies in some hyperplane in $\mathbb{C} P^{9}$. However, since we have found random points on $4 H+D_{1}$ previously in this section, a direct check in 4 H -Torsion.nb shows that there exists 10 points of one section of $H^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 4 H+D_{1}\right)$ whose determinant is non-zero, hence we have a contradiction. A similar check is done for $4 H+D_{8}$ to show that $h^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 4 H+D_{8}\right)=0$.

Remark. Since $h^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 2 H\right)=0$, we know that $h^{0}\left(\mathbb{P}_{\text {fake }}^{2}, H+T\right)=0$. This is because the existence of any non-trivial section in $h^{0}\left(\mathbb{P}_{\text {fake }}^{2}, H+T\right)$ would imply $h^{0}\left(\mathbb{P}_{\text {fake }}^{2}, 2 H\right) \neq 0$ by tensoring with itself.

References

[BBF22] Lev Borisov, Anders Buch, and Enrico Fatighenti. A journey from the octonionic \mathbb{P}^{2} to a fake \mathbb{P}^{2}. Proceedings of the American Mathematical Society, 150 (2022), 1467-1475, 2022.
[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997. Computational algebra and number theory (London, 1993).
[BF20] Lev Borisov and Enrico Fatighenti. New explicit constructions of surfaces of general type, 2020.
[BJLM] Lev Borisov, Mattie Ji, Yanxin Li, and Sargam Mondal. Code accompanying "On the Geometry of a Fake Projective Plane with 21 Automorphisms". https://github.com/mattie-ji/FPP-21-Geometry and https://sites.math.rutgers.edu/~borisov/FPP-21-Geometry
[BK20] Lev A. Borisov and JongHae Keum. Explicit equations of a fake projective plane. Duke Mathematical Journal, 169(6), apr 2020.
[BL23] Lev Borisov and Zachary Lihn. Realizing a fake projective plane as a degree 25 surface in $\mathbb{P}^{5}, 2023$.
[Bor23] Lev Borisov. On equations of fake projective planes with automorphism group of order 21. Épijournal de Géométrie Algébrique, Volume 7, 2023.
[CS10] Donald I. Cartwright and Tim Steger. Enumeration of the 50 fake projective planes. Comptes Rendus Mathematique, 348(1):11-13, 2010.
[GKS23] Sergey Galkin, Ilya Karzhemanov, and Evgeny Shinder. On automorphic forms of small weight for fake projective planes. Moscow Mathematical Journal, 23(1):97-111, feb 2023.
[GS] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/
[Har77] Robin Hartshorne. Algebraic geometry, volume No. 52. Springer-Verlag, New York-Heidelberg, 1977.
[Inc] Wolfram Research, Inc. Mathematica, Version 12.0. Champaign, IL, 2019.
[Keu06] JongHae Keum. A fake projective plane with an order 7 automorphism. Topology, 45(5):919-927, 2006.
[Mum79] D. Mumford. An algebraic surface with K ample, $\left(K^{2}\right)=9, p_{g}=q=0$. American Journal of Mathematics, 101(1):233-244, 1979.
[PY07] Gopal Prasad and Sai-Kee Yeung. Fake projective planes. Inventiones mathematicae, 168(2):321-370, feb 2007.
[Wei60] Andre Weil. On discrete subgroups of lie groups. Annals of Mathematics, 72(2):369-384, 1960.
[Yau77] Shing-Tung Yau. Calabi's conjecture and some new results in algebraic geometry. Proceedings of the National Academy of Sciences of the United States of America, 74 5:1798-9, 1977.
[Yeu08] Sai-Kee Yeung. Classification of fake projective planes. Institute of Mathematical Research Preprint Series 2008, 2008.

Hill Center Department of Mathematics, Rutgers University, NJ 08854
Email address: borisov@math.rutgers.edu
URL: https://sites.math.rutgers.edu/~borisov

Brown University, Department of Mathematics, Box 1917, 151 Thayer Street, Providence, RI 02912, USA
Email address: mattie_ji@brown.edu

Hill Center Department of Mathematics, Rutgers University, NJ 08854
Email address: yl1203@scarletmail.rutgers.edu

Middlesex County Academy for Science, Mathematics \& Engineering Technologies
Email address: sm2893@scarletmail.rutgers.edu

[^0]: 2020 Mathematics Subject Classification. Primary: 14E25, 14Q10. Secondary: 14C20, 14J29.

