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REALIZING A FAKE PROJECTIVE PLANE AS A

DEGREE 25 SURFACE IN P5

LEV BORISOV AND ZACHARY LIHN

Abstract. Fake projective planes are smooth complex surfaces of
general type with Betti numbers equal to that of the usual projec-
tive plane. Recent explicit constructions of fake projective planes
embed them via their bicanonical embedding in P9. In this paper,
we study Keum’s fake projective plane (a = 7, p = 2, {7}, D327)
and use the equations of [1] to construct an embedding of fake
projective plane in P5. We also simplify the 84 cubic equations
defining the fake projective plane in P9.

1. Introduction

The Enriques–Kodaira classification splits compact complex sur-
faces S into 10 classes based largely on their Kodaira dimension k(S).
While surfaces with Kodaira dimension < 2 are better understood,
those of general type with maximum Kodaira dimension k(S) = 2 still
need a detailed classification.

To each minimal model of a surface S one associates a triple of
numerical invariants (pg, q,K

2

S), where pg = h0(S,KS) is the geo-
metric genus, q = h1(S,OS) is the irregularity, and K2

S is the self-
intersection number of the canonical class KS. These determine all the
other classical invariants such as the topological Euler characteristic
etop(S) = 12χ(OS)−K2

S and the plurigenera Pm(S) = h0(S,mKS) [6].
It turns out that producing surfaces with low pg and q is quite diffi-
cult and a complete classification appears far away [2]. In the case of
pg = q = 0, one has the Bogomolov-Miyaoka-Yau inequality K2

S ≤ 9.
The focus of this paper is the extreme case of surfaces with pg = q = 0
and K2

S = 9. These are the fake projective planes (often called FPPs
for short) which by definition are complex projective surfaces of general
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which is the same as that of CP2. The existence of a fake projective
plane was first proved by Mumford [13] by expressing the surface as a
quotient of a 2-adic analog of the complex two-dimensional ball

B2 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 ≤ 1}
by a finitely generated group.

The general theory ensures that each fake projective plane is alge-
braic. By Noether’s formula we know that c2

1
= 9 and so all FPPs have

c2
1
= 3c2 = 9, where c1, c2 are the Chern numbers. This implies that

each FPP is a quotient of B2 by an infinite discrete group [15]. These
ball quotients are determined by their fundamental group up to holo-
morphic or anti-holomorphic isomorphism [12] and come in complex
conjugate pairs [8]. Each of the groups are arithmetic [9] and come in
a finite list of classes [14].

Based on the work of Prasad and Yeung [14], a complete classifi-
cation was obtained by Cartwright and Steger [3]. All fake projective
planes are quotients of B2 by explicit co-compact torsion-free arith-
metic subgroups of PU(2, 1). The classification was accomplished with
significant use of computer calculations. There are 50 conjugate pairs
of fake projective planes split among 28 classes. Each FPP is a ball
quotient B2/Γ where Γ is the fundamental group, and where the auto-
morphism group is N(Γ)/Γ with N(Γ) the normalizer of Γ in PU(2, 1).
The torsion of the Picard group of P2

fake is equal to the abelianization
of Γ. Various cover relations between related surfaces are also known
[3].

1.1. The Geometry of Keum’s Fake Projective Plane. In this
paper, we will focus on the fake projective plane (a = 7, p = 2, {7}, D327)
in Cartwright-Steger classification. First constructed in [7], it is named
Keum’s fake projective plane and we will denote it by P2

Keum. Its auto-
morphism group has maximum order among all FPPs, being equal to
the semi-direct product of a normal cyclic subgroup C7 of order 7 and
a non-normal cyclic subgroup C3 of order 3. By the Cartwright-Steger
classification, there are three other fake projective planes in its class
including Mumford’s first fake projective plane.
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For the rest of this paper, we will let K denote the canonical class
of Keum’s fake projective plane. The minimal resolution Y of the
quotient P2

Keum/C7 by the subgroup C7 of its automorphism group has
interesting geometry which we describe briefly.

Recall that a singular point of type 1

m
(1, a) is a cyclic quotient sin-

gularity given local analytically by the action (x, y) 7→ (ζx, ζay) on C2

for ζ a primitive mth root of unity. Y has three singular points of type
1

7
(1, 3) permuted by the residual C3 automorphism group of P2

Keum. It
is also a Dolgachev surface fibered over P1, with generic fibers of genus
1, two multiple fibers, three nodal fibers, and one fiber of type I9. The
two multiple fibers are 2F3 and 3F2, which have multiplicity 2 and 3
respectively. The reductions F3 and F2 are linearly equivalent to 3KY

and 2KY . We refer to [7, 1] for more details.

1.2. Explicit Construction of P2

Keum. In [1], Keum’s fake projective
plane was explicitly constructed via its bicanonical embedding as the
vanishing set of 84 cubic equations in P9. One first constructs a bira-
tional model Y0 of Y as a system of quadrics in 8 variables defined over
Q(

√
−7). Included is a construction of the double and triple fibers and

the C3 action on Y0. A degree 7 extension of the field of rational func-
tions of Y0 gives the sevenfold cover of Y0, which is exactly P2

Keum. Ten
sections of O(2K) are constructed from this description and the em-
bedding in P9 is finally given by 84 cubic equations in the 10 variables
P0, . . . , P9.

A perennial question is how to simplify the equations of a fake pro-
jective plane, which can have polynomials with coefficients hundreds
to thousands of decimal digits long. In this paper, we give a simplified
version of the equations of Keum’s fake projective plane in [1]. We use
the equations to find an embedding of P2

Keum as a degree 25 surface
in P5. The embedding is given by sections of O(5H), where H is a
divisor such that 3H is linearly equivalent to K. Finally, we exhibit
the surface as a system of 56 sextics in P5 with coefficients in the field
Q(

√
−7).

The paper is organized as follows. In Section 2 we outline the steps
to simplify the 84 cubics defining P2

Keum in P9. We follow the strategy
described in [1] by explicitly calculating the nonreduced linear cuts on
P2

Keum corresponding to 2-torsion in the Picard group. Using these
equations, in Section 3 we describe the steps to embed P2

Keum in P5.
Specifically, we compute global sections of O(5H) as global sections of
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the divisor 18H − 9H − 4H and explain the key idea that allowed us
to find H0

(

P2

fake,O(4H)
)

. Section 4 concludes with future directions.

Remark 1.1. A defining feature of recent constructions of fake projec-
tive planes is their heavy use of computer algebra software. To that
end, this project depended heavily on the use of the Mathematica soft-
ware system [10] and the computer algebra systems Magma [11] and
Macaulay2 [4].

Remark 1.2. The 84 cubics in P9 and the 56 sextics in P5 are still too
large to be included in the printed paper.

2. Simplification of Keum’s Fake Projective Plane

We will begin by simplifying the explicit equations of Keum’s fake
projective plane P2

Keum found in [1]. This is done by looking for nonre-
duced cuves on P2

Keum which correspond to 2-torsion in the Picard
group. We proceed by making a coordinate change that makes the
curve nicer in our new basis.

Step 1: Finite Field Search for Nonreduced Curves. By the
Cartwright-Steger classification, the torsion in the Picard group of
P2

Keum is C3

2
. In addition, the automorphism group is C7 ⋊ C3, the

semidirect product of C7 and C3.

We claim that 2-torsion classes give nonreduced curves in |2K|.
Let L be a 2-torsion class in the Picard group. By [5], we have
h0(P2

Keum, K + L) = 1. Hence, up to scaling, there is a unique sec-
tion sL ∈ H0(P2

Keum, K + L). The square of sL is in H0(P2

Keum, 2K)
and gives rise to a nonreduced curve.

We will further assume that the nonreduced curve is C3 invariant.
This reduces the search to nonreduced curves of the form

a0P0 + a1(P1 + P2 + P3) + a2(P4 + P5 + P6) + a3(P7 + P8 + P9)

up to scaling (so we subsequently set a0 = 1). To look for such curves
we look at a finite field reduction of P2

Keum over Fp for suitable p.
More precisely, such suitable p contains a square root of −7 and has
the same Hilbert polynomial for P2

Keum modulo p. We picked p =
43 with

√
−7 ≡ 6 mod 43 which was an arbitrary small prime with

the aforementioned conditions. Using Magma, we ran an exhaustive
search for all a1, a2, a3 in F43 and checked if the corresponding curve is
nonreduced. We obtained the curve

P0 + 24(P1 + P2 + P3) + 0(P4 + P5 + P6) + 28(P7 + P8 + P9).
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Step 2: Lift to Characteristic 0. We lift this curve to Q(
√
−7) as

follows. Using Magma, we calculate some points in F43 lying on P2

Keum

and the nonreduced curve. We then apply a variant of Hensel lifting to
lift the curve to Z/43kZ for higher k at each step, obtaining a p-adic
approximation.

The lifting process was done by finding, at each point, two linearly-
independent tangent vectors in P9(F43) that are orthogonal to all poly-
nomials defining P2

Keum and the linear cut. We modified the points,
tangent vectors, and the linear cut at each stage to lift them to higher
powers of 43 such that the orthogonality conditions held; this reduced
to solving a system of linear equations modulo 43. After a sufficiently
high power of 43 we identify the corresponding algebraic numbers by
applying a lattice reduction algorithm. We obtain the curve

P0 +
(−1 +

√
−7)

2
(P1 + P2 + P3) +

(272− 848
√
−7)

7
(P4 + P5 + P6)

+
(832− 192

√
−7)

7
(P7 + P8 + P9)

which we verify is nonreduced numerically.

Thus we have found one nontrivial C3-invariant torsion line bundle.
It is not C7-invariant because the corresponding nonreduced linear cut
is not C7 invariant. Its orbit therefore has 7 elements, which combined
with knowledge of the torsion of the Picard group as C3

2
shows that

the action of the automorphism group on the torsion in Picard group
is transitive.

Step 3: Setting Up the Coordinate Change. Finally we set up
the coordinate change to find a nicer basis for H0(P2

Keum, 2K) in order
to simplify the equations defining the fake projective plane. We use a
coordinate change from Pi to Qi that respects the automorphisms on
the surface such that the the nonreduced cut becomes

Q0 +Q1 +Q2 +Q3 +Q7 +Q8 +Q9.

These conditions leave one free parameter in the coordinate change.
We fix the free parameter by choosing it in such a way to set the
”simplest” coefficient in the equations to 1. This allows us to find a
version of the 84 equations with significantly smaller coefficients.

We simplify the equations further by reducing the number of mono-
mials in the equations. We take random linear combinations of the
seven equations in each C7 weight and select those that span the space
and have the fewest monomials.
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3. Embedding of a fake projective plane into P5

In this section, we will describe the process that led us to find the
equations of an embedding of P2

Keum in P5. Let H be a divisor such
that 3H = K, where K = KP2

Keum

is the canonical divisor of P2

Keum.

Calculations of h0(P2

Keum, nH) show that |5H| has the expected dimen-
sion such that the corresponding map to projective space is P5. Thus
we aim to construct |5H| explicitly, which will give the desired map
P2

Keum → P5.

n 3 4 5 6 7 8 9 10 11 12
h0 (P2

Keum, nH) 0 3 6 10 15 21 28 36 45 55

Table 1. Dimensions of H0(P2

Keum, nH) for different
values of n, where 3H = K

.

Recall that Y denotes the quotient P2

Keum/C7 of Keum’s fake pro-
jective plane by its C7 automorphism subgroup. It has residual auto-
morphism group C3 and has a double fiber F = 3KY .

We will construct |5H| as the space |18H− 9H − 4H|. We first find
|9H| = |18H−9H| by expressing 112 cubic equations in the Qi (which
lie in 18H = 6K) that vanish on 9H . Crucial to this construction is
the preimage of the double fiber F of Y which we use to find points on
9H . We then compute |4H|. This required the use of several important
ideas which are detailed in Step 2 below. Finally, after constructing
4H we may find 5H as linear combinations of the equations of 9H
vanishing on 4H . We conclude by using the explicit equations in P5 to
reconstruct the C3 action on P2

Keum in its embedding into P5.

Step 1: Constructing |9H|. The preimage of the double fiber on Y
has divisor class 3K = 9H [1]. Hence to construct |9H| we are led
to find polynomials on Y vanishing on the double fiber. Recall that
[1] constructs the surface Y as a system of quadrics in the variables
u0, u1, w1, . . . , w6 with the double fiber given by {u1 = 0}. We com-
pute a number of random points on the double fiber of Y and use the
equations to construct points on P2

Keum lying on the preimage of the
double fiber. We then look for polynomials vanishing on these points
to compute H0(P2

Keum, 9H). The search for cubic polynomials gave 112
cubics with 16 in each C7 weight.

Step 2: Constructing |4H|. We may attempt to construct |4H| as
follows. The action of the C7 automorphism subgroup onH0(P2

Keum, 4H)
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gives a C7-representation which splits H0(P2

Keum, 4H) into three one-
dimensional C7-eigenspaces. The Holomorphic Lefschetz Fixed-Point
formula shows that the eigenvalues are ξ3, ξ5, ξ6, where ξ is a seventh
root of unity. Thus H0(P2

Keum, 4H) ∼= Cr3 ⊕ Cr5 ⊕ Cr6 where r3, r5, r6
are sections of 4H with C7-weights 3, 5, and 6 respectively. In addition,
the C3-action on the surface implies r5 = σ(r3), r6 = σ2(r3) for σ an
order 3 automorphism on P2

Keum. The product d = r3r5r6 is therefore
a C3-invariant section with C7-weight 0 in H0(P2

Keum, 12H) (it is then
invariant under the whole automorphism group).

Set si = r3i ∈ H0(P2

Keum, 12H) for i ∈ {3, 5, 6}. The equation

s3s5s6 = d3

in H0(P2

Keum, 36H) allows us to narrow down parameters in the search
for r3, r5, r6. Since s3, s5, s6, and d lie in H0(P2

Keum, 12H), they are
quadratic in the variables Q0, . . . , Q9 for the fake projective plane. It
is sufficient to construct s3 since s5 and s6 may be constructed from
s3 with the C3 action. Additionally, since s3 has C7 weight 3 × 3 ≡ 2
mod 7, we narrow the search down to C7-weight 2 quadratics.

We may further reduce the number of parameters with additional
data. The curve {r3 = 0} passes through the two C7 fixed points

p1 = (0: 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0),

p2 = (0: 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0).

It follows that at these points the curve {s3 = 0} vanishes with multi-
plicity 3, which place additional conditions on the coefficients of s3.

Now we begin describing the details of the calculation. We first
calculate the order 3 neighborhoods of the points p1 and p2. This was
done by computing the tangent space and solving for the conditions
of the neighborhoods vanishing on the FPP. We began by solving for
the order 2 neighborhood and then for the third order. To speed up
calculations, it was sufficient to take some equations for P2

Keum locally
cutting out the point. After computing these neighborhoods, we posit
the general form for s3 as weight 2 quadratics in the variables and then
solve for the conditions of being identically 0 at the higher order neigh-
borhoods. We are able to solve for two of these variables, narrowing
down the general form for s3 to 6 variables.

We now want to solve for the sextic equation s3s5s6 − d3 = 0. The
requirement that d be invariant under the full automorphism group
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forces it to be of the form

e1Q
2

0
+ e2(Q1Q6 +Q2Q4 +Q3Q5) + e3(Q1Q9 +Q2Q7 +Q3Q8)

for undetermined coefficients e1, e2, e3. We also obtain the general
forms for s5 and s6 by applying the C3 automorphism to s3. To solve
for the coefficients, we compute some points of P2

Keum with high accu-
racy and substitute them into s3s5s6 − d3 = 0 to obtain a system of 24
cubics in 6 variables. We solve this system of equations by applying
the trick of [2]. The Hilbert polynomial of the system of equations
modulo 37 with

√
−7 ≡ 17 mod 37 is 3, which suggests that there are

3 solutions for this system. By applying successive linear conditions on
the system and checking the Hilbert polynomial at each step, we are
able to take linear cuts that drop the Hilbert polynomial eventually
to 1. At some point there are 3 different choices for the linear cuts
corresponding to our 3 solutions. We were able to lift these 3 solutions
modulo 37200 and then use the lattice reduction algorithm to obtain the
corresponding solutions over Q(

√
−7). The three solutions differed by

a cube root of unity. We selected the solution defined over the desired
field of definition to proceed.

The solution for these coefficients allow us to fully determine s3, s5, s6,
and d. The equations for s3 and d are given below, with s5 and s6 found
by applying the C3 automorphism. Points on {r3 = 0} may then be
calculated by solving for the simultaneous conditions {s3 = 0, d = 0}.
These points were used later in the construction.

s3 =

(

−212275 + 26525i
√
7
)

Q0Q5

2470336
+

(

22575 + 51275i
√
7
)

Q0Q8

1235168

+

(

139475 + 17575i
√
7
)

Q1Q2

9881344
+

(

196875− 91425i
√
7
)

Q3Q4

2470336

+

(

−303625− 270725i
√
7
)

Q3Q7

4940672
+

(

139475 + 17575i
√
7
)

Q2

6

1235168

+

(

795725− 287175i
√
7
)

Q6Q9

4940672
+

(

−57575− 549675i
√
7
)

Q2

9

9881344

d =
25

9881344

(

3407
√
−7Q2

0
+ 17045Q2

0
− 2812

√
−7Q1Q6 − 22316Q1Q6

+ 329
√
−7Q1Q9 − 21987Q1Q9 − 2812

√
−7Q2Q4 − 22316Q2Q4 + 329

√
−7Q2Q7

− 21987Q2Q7 − 2812
√
−7Q3Q5 − 22316Q3Q5 + 329

√
−7Q3Q8 − 21987Q3Q8

)

Step 3: The map P2

Keum → P5. With the computations of 9H and
4H we may now find 5H . We look at suitable linear combinations of the
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112 polynomials vanishing on 18H − 9H = 9H additionally vanishing
on 4H to obtain 18H − 9H − 4H = 5H .

We first compute some random points on 4H by solving for {d =
0, s3 = 0} on the FPP. 5H is then found by looking for linear combi-
nations of the cubics defining 9H for each weight that vanish on these
points. To verify that they are in |5H| we also check that they do not
vanish on the whole fake projective plane.

The six resulting degree 3 polynomials give us the map P2

Keum → P5.
We calculate points in the image of this map in P5 and find 56 degree
6 polynomials in new variables Z1, . . . , Z6 that vanish at these points.
These give the desired embedding of the fake projective plane.

Remark 3.1. The C7-weights on the variables Z1, Z2, . . . , Z6 are 1, 2, . . . , 6.
There is no weight 0 variable. The construction required that we shift
the C7 weights by 3. This may be explained by viewing our construc-
tion of H0(P2

Keum, 5H) as given by an embedding

H0(P2

Keum, 5H) →֒ H0(P2

Keum, 18H)

with the map given by tensoring with s3 ⊗ f for s3 ∈ H0(P2

Keum, 4H)
and f ∈ H0(P2

Keum, 9H). While f has weight 0, s3 has weight 3 and
therefore shifts the weights of H0(P2

Keum, 5H) by 3.

We take care to reconstruct the automorphism group. While the C7-
action is preserved under our construction, the non-C3-invariance of s3
introduces a scaling factor in the C3 action. We fix the coefficients
of this scaling factor and recompute the equations with the scaling
to find a better basis for the action. As before, we take random linear
combinations of the equations that span the space and take the simplest
ones to further simplify the equations.

Finally, we use Magma to verify that the Hilbert polynomial is as
expected. The verification process for the FPP is carried out as in [1]
working modulo p = 1327 with

√
−7 = 103 mod 1327. Thus we have

constructed Keum’s fake projective plane as a degree 25 surface in P5.

4. Future Directions

One hopes to find a coordinate change to additionally simplify the
56 equations in P5.

A related construction of interest is that of Mumford’s original fake
projective plane [13]. This surface has not been explicitly constructed
yet. It lies in the same class as P2

Keum and two other fake projective
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planes. We are currently attempting to find this surface by computing
a seven-to-one cover of P2

Keum, after which several cover relations may
yield the surface and the two fake projective planes in the same class.
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