
FINDING EQUATIONS OF THE FAKE PROJECTIVE

PLANE (C18, p = 3, {2I})

LEV BORISOV AND BOJUE WANG

Abstract. We find explicit equations of a new pair of fake projective
planes, labeled by (C18, p = 3, {2I}) in the Cartwright-Steger classifica-
tion. Our method involves starting with known equations of a commen-
surable fake projective plane (C18, p = 3, ∅, d3D3) and working through
a chain of cyclic covers and quotients to get to the new one.
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1. Introduction.

Complex projective algebraic surfaces X are classified according to their
Kodaira dimension κ(X). The case κ(X) = 2, when X is a surface of
general type, is arguably the least understood. Among such surfaces one
is especially interested in those with small Hodge numbers, in particular
h1,0(X) = h2,0(X) = 0, see for example the review [1]. These are further
separated by the square of their canonical class K2

X , and the extreme case
K2
X = 9 occurs for the so-called fake projective planes (from here on called

FPPs), which are characterized by having the same Hodge numbers as the
usual projective plane CP2.

First example of an FPP was given by Mumford in [19], using the method
of 2-adic uniformization. Research over the next several decades by multiple

1



2 LEV BORISOV AND BOJUE WANG

authors (see in particular [10, 12–16, 20]) led to the full classification of all
FPPs as quotients of the complex 2-ball B2 by explicit finitely presented
arithmetic groups in [10]. There are exactly 100 FPPs up to isomorphism,
gathered into 50 pairs of complex conjugate surfaces.

Unfortunately, a ball quotient description does not directly lead to any
explicit equations of an FPP in its embedding into a projective space. First
such equations of an FPP in its bicanonical embedding into CP9 were found
in [7]. Since then, L.B. and multiple coauthors have found explicit equa-
tions of ten more complex conjugate pairs of FPPs [2–5]. The current paper
continues this program by finding explicit equations of an FPP labeled by
(C18, p = 3, {2I}) in the Cartwright-Steger classification. Our method in-
volves starting from known equations of a commensurable FPP and using
it to produce the equations of a new FPP. Even though it is similar to the
method of [4] and [5], we had to overcome significant computational diffi-
culties that arose because of the large degree of the common Galois cover of
the two FPPs.

1.1. General description of the process. The FPP indexed by (C18, p =
3, {2I}) is known to be commensurable to the FPP indexed by (C18, p =
3, ∅, d3D3) in Cartwright-Steger list whose equations were found in [3] several
years ago. For the remainder of the paper, we will adopt the following
notation.

Notation 1.1. We write P2
fake for the fake projective plane in the pair

(C18, p = 3, ∅, d3D3) whose equations were found in [3]. We write P̂2
fake for

the commensurable plane in the class (C18, p = 3, {2I}) whose equations
we find in this paper.

The following results follow from the computations of Cartwright and
Steger and additional GAP [11] calculations we did in the file GAPdataAll
of [9]. The fake projective plane P2

fake has an automorphism group C3×C3

and P̂2
fake is a non-Galois degree 9 cover of P2

fake/C3 × C3. In the other

direction, there is a surface which we denote by 72.P2
fake which is a common

Galois cover of P2
fake and P̂2

fake.

Proposition 1.2. There is a surface 72.P2
fake with an automorphism group

G648 of order 648 = 2334 which is isomorphic to the direct product of C3

and the semidirect product of SL(2,Z/3Z) and C3×C3 (with the canonical
action of the former on the latter)

G648
∼= C3 × (SL(2,Z/3Z) n (C3 × C3)) .

The fake projective planes P2
fake and P̂2

fake are the quotients of 72.P2
fake by

the normal subgroup of G648 of order 72

G72 = {1} × (Q8 n (C3 × C3))
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and the nonnormal subgroup of G648 of order 72

Ĝ72 = C3 × (SL(2,Z/3Z)× {1}) ,
respectively. Here Q8 is the normal 2-Sylow subgroup of SL(2,Z/3Z), iso-
morphic to the quaternion group.

Proof. This is a result of the GAP computation in GAPdataAll, see [9]. �

In this paper we consider the following diagram of surfaces and Galois
covers.

72.P2
fake

↙ ↘

8.P2
fake 9.P̂2

fake

↓ ↘ ↘

4.P2
fake 8.P2

fake/C3 P̂2
fake

↙ ↓ ↘
2.P2

fake 2.P2
fake 2.P2

fake

↘ ↓ ↙
P2
fake

Here the surface 8.P2
fake is the quotient of 72.P2

fake by the normal subgroup

{1} × ({1}n (C3 × C3))

of G648. This surface is an unramified Q8 Galois cover of P2
fake and 4.P2

fake

and 2.P2
fake correspond to the center and three index two subgroups of Q8,

respectively. Three different covers 2.P2
fake → P2

fake correspond to 2-torsion

line bundles on P2
fake that are permuted by an order three automorphism of

P2
fake. The surface 8.P2

fake/C3 is a singular quotient of 8.P2
fake by the image

of the central C3 of G648 (the first C3 factor). It is used in intermediate cal-
culations to get enough points on 72.P2

fake with high accuracy. The surface

9.P̂2
fake is the quotient of 72.P2

fake by the 2-Sylow subgroup of G648

{1} × (Q8 n {1}) .

It is a C3 × C3 unramified Galois cover of P̂2
fake, which we used to simplify

the equations of P̂2
fake.

The method of the paper is to start with the known equations of P2
fake,

make our way up to 72.P2
fake and then take invariants to get down to P̂2

fake.

We start with equations of P2
fake found in [3]. They describe the image of

P2
fake in its bicanonical embedding into CP9 as being cut out by 84 cubic

equations in 10 variables. The coefficients (in Z[
√
−2]) are about 100 digits
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long. There is an explicit C3 × C3 action on CP9 that gives automorphism
of P2

fake.

Step 1. We find a nonreduced linear cut on P2
fake which corresponds

to the square of a 2-torsion element of the Picard group of P2
fake. This

is done by first running an exhaustive search modulo 73, then lifting the
nonreduced cut it to 73-adics to high enough accuracy and finally recognizing
the resulting coefficients as algebraic numbers.

Step 2. We use the nonreduced linear cut above to simplify the equations
of P2

fake by picking a better basis of H0(P2
fake, 2K). We also choose to make

it a basis of C3 × C3 eigenvectors. The downside is that the equations now
have coefficients in Q(

√
−2,
√
−3) which will be the case for most of the

process.

Step 3. We use the same cut to find equations of the double cover
2.P2

fake in its putative bicanonical embedding into CP19. It is cut out by 100

quadratic equations in 20 variables.1 We also use the known automorphism
group of P2

fake to construct 4.P2
fake. We do not try to compute the equations

of its putative bicanonical embedding, as there would be too many of them,
but we develop a way of constructing points of its image in CP39 with high
accuracy.

Step 4. We construct the double cover 8.P2
fake of 4.P2

fake. In fact, we first

construct its quotient 8.P2
fake/C3 which is likely the image of the canonical

map 8.P2
fake → CP6.2 It is given by 4 cubic and 58 degree four equations in

7 variables. We also find the action of Q8 on 8.P2
fake/C3. We then find a way

of constructing points with high accuracy in what is likely the bicanonical
embedding of 8.P2

fake into CP79.

Step 5. In what is arguably the most delicate part of the calculation,
the C3 × C3 cover 72.P2

fake → 8.P2
fake is determined by finding a relation

among certain bicanonical sections on 8.P2
fake. As a result, we find a basis of

the 71-dimensional space H0(72.P2
fake,K) in terms of algebraic functions in

H0(8.P2
fake, 2K) and H0(8.P2

fake,K). We also find the values of the elements
of this basis on some random points, with very high accuracy. We find the
action of G648 on this 71-dimensional space, in particular we find the action
of the subgroup

Ĝ72 = C3 × (SL(2,Z/3Z)× {1}) .
We compute the linear invariants of the Q8 action on the dimension 71 space

to get points in the putative canonical embedding of 9.P̂2
fake into CP7. We

also compute the quadratic invariants of the action of G72. We use C3×C3

1We do not actually verify that it is an embedding, but it is highly likely
2Again, we do not actually verify that this is the image, but it factors through it.
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invariant products of elements of H0(9.P̂2
fake,K) to compute special curves

on P̂2
fake.

Step 6. Looking at the intersections of the above special curves, we find

a basis of H0(P̂2
fake, 2K) where the equations are defined over the smaller

field Q(
√
−2) and have smaller coefficients.

Step 7. We use the usual methods to verify that the equations we obtain
indeed cut out a fake projective plane.

1.2. Disclaimers, acknowledgements and further directions. We de-
scribe most of our surfaces in terms of multiple points in the images of their
maps into a projective space, computed with high accuracy (hundreds to
thousands of decimal digits). Thus our intermediate calculations cannot be
deemed fully rigorous, which necessitates an eventual verification that the
surface we obtain is indeed an FPP in a bicanonical embedding. We have
use GAP, Magma and Mathemaica [11,17,18] with most of the computations
performed in the latter.

We believe that our results may allow us to eventually compute all three

remaining pairs of FPPs that are commensurable to P2
fake and P̂2

fake. They

are labeled by (C18, p = 3, {2}, D3), (C18, p = 3, {2}, (dD)3) and (C18, p =
3, {2}, (d2D)3) in Cartwright-Steger classification.

2. Technical details: group-theoretic calculations.

In this section we collect the results of GAP calculations and related
computations of characters of finite group representations.

Proposition 2.1. The torsion subgroups of the Picard groups of the covers
of fake projective planes above are given by the following table.

P2
fake 4.P2

fake 8.P2
fake 72.P2

fake 9.P̂2
fake P̂2

fake

C2
2 × C13 C8

2 × C2
3 C2

3 × C13 C8
2 × C3 × C13 C3

2 × C3 × C13 C2 × C2
3

(2.1)

Proof. Computed by GAP. �

Recall that there is a divisor class H on P2
fake so that its canonical class

is K = 3H. We abuse the notation and use K and 3H interchangeably
throughout the rest of the paper to denote the canonical line bundles (or
divisor classes) on various surfaces. Note that the corresponding line bundles
come with a natural linearization with respect to the automorphism group
of the surface.

Proposition 2.2. We have the following dimensions of the spaces of global
sections of the canonical and the bicanonical invertible sheaves O(3H) and
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O(6H) on the surfaces mentioned above.

dimCH
0(·, 3H) dimCH

0(·, 6H)

P2
fake, P̂2

fake 0 10

2.P2
fake 1 20

4.P2
fake 3 40

8.P2
fake 7 80

8.P2
fake/C3 7 32

72.P2
fake 71 720

9.P̂2
fake 8 90

Proof. The case of 8.P2
fake/C3 is special since this surfaces is singular, and

it also does not cover a fake projective plane. We will treat it last.

For an n-fold unramified cover X of a fake projective plane, we have
χ(X, kH) = n

2 (k−1)(k−2) by the Riemann-Roch theorem. Since KX = 3H

is ample, for k > 3 Kodaira vanishing theorem assures that h0(X, kH) =
χ(X, kH). Thus, h0(X, 6H) = 10n which gives the values of the right col-
umn of the above table. Similarly, we have

h0(X, 3H) = χ(3H)− h2(X, 3H) + h1(X, 3H)

= n− h2,2(X) + h1,2(X) = n− 1 + h1,0(X).

Since the fundamental groups of the above surfaces have finite abelianization
by Proposition 2.1, we have h1,0(X) = 0. This implies the values in the
middle column of the above table.

The dimensions of H0(8.P2
fake/C3, 3H) and H0(8.P2

fake/C3, 6H) are the

dimensions of the spaces of invariants for the central C3 action on 8.P2
fake.

Note that the action of the generator g of this C3 on P2
fake has 3 fixed points

of type 1
3(1, 2), see [14]. Since g also acts on 2.P2

fake, its action on the two-

point preimage of every fixed point on P2
fake must be trivial, so g has 6 fixed

points of the same type on 2.P2
fake. Similarly, its action on 4.P2

fake has 12

fixed points and its action on 8.P2
fake has 24 fixed points. Each of these

singular points has the same contribution to
∑2

i=0(−1)iTr(g,H i(X, 3H)) in
the the Holomorphic Lefschetz formula. We know that this sum is 1 for
X = P2

fake, therefore it is equal to 8 for X = 8.P2
fake, i.e.

2∑
i=0

(−1)iTr(g,H i(8.P2
fake, 3H)) = 8.

Consequently, all sections of H0(8.P2
fake, 3H) are invariant with respect to

the action of g, and the canonical map of 8.P2
fake factors through the quo-

tient surface 8.P2
fake/C3. Since

∑2
i=0(−1)iTr(g,H i(8.P2

fake, kH)) depends
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only on k mod 3, we see that the action of g on the 80-dimensional space
H0(8.P2

fake, 6H) has invariant subspace of dimension 32 and two spaces of

dimension 24 each of eigenvalues e±2πi/3. �

In what follows, it will be important for us to understand the represen-
tation of G648 on the dimension 71 space H0(72.P2

fake, 3H). According to

GAP [11], the character table of G648 is given by

1a 3a 2a 4a 3b 3c 6a 3d 3e 6b 3f 3g 6c 12a 3h 3i 6d 3j 3k 6e 3l 3m 6f 12b 3n 3o 6g 3p 3q 6h
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 1 1 1 1 1 α α α α α α α α α α ᾱ ᾱ ᾱ ᾱ ᾱ ᾱ ᾱ ᾱ ᾱ ᾱ
χ3 1 1 1 1 1 1 1 1 1 1 ᾱ ᾱ ᾱ ᾱ ᾱ ᾱ ᾱ ᾱ ᾱ ᾱ α α α α α α α α α α
χ4 1 1 1 1 α α α ᾱ ᾱ ᾱ 1 1 1 1 α α α ᾱ ᾱ ᾱ 1 1 1 1 α α α ᾱ ᾱ ᾱ
χ5 1 1 1 1 ᾱ ᾱ ᾱ α α α 1 1 1 1 ᾱ ᾱ ᾱ α α α 1 1 1 1 ᾱ ᾱ ᾱ α α α
χ6 1 1 1 1 α α α ᾱ ᾱ ᾱ α α α α ᾱ ᾱ ᾱ 1 1 1 ᾱ ᾱ ᾱ ᾱ 1 1 1 α α α
χ7 1 1 1 1 ᾱ ᾱ ᾱ α α α ᾱ ᾱ ᾱ ᾱ α α α 1 1 1 α α α α 1 1 1 ᾱ ᾱ ᾱ
χ8 1 1 1 1 α α α ᾱ ᾱ ᾱ ᾱ ᾱ ᾱ ᾱ 1 1 1 α α α α α α α ᾱ ᾱ ᾱ 1 1 1
χ9 1 1 1 1 ᾱ ᾱ ᾱ α α α α α α α 1 1 1 ᾱ ᾱ ᾱ ᾱ ᾱ ᾱ ᾱ α α α 1 1 1
χ10 2 2−2 . −1 −1 1 −1 −1 1 2 2 −2 . −1 −1 1 −1 −1 1 2 2 −2 . −1 −1 1 −1 −1 1
χ11 2 2−2 .−α−α α−ᾱ−ᾱ ᾱ 2 2 −2 .−α−α α−ᾱ−ᾱ ᾱ 2 2 −2 .−α−α α−ᾱ−ᾱ ᾱ
χ12 2 2−2 .−ᾱ−ᾱ ᾱ−α−α α 2 2 −2 .−ᾱ−ᾱ ᾱ−α−α α 2 2 −2 .−ᾱ−ᾱ ᾱ−α−α α
χ13 2 2−2 .−α−α α−ᾱ−ᾱ ᾱ β̄ β̄−β̄ .−ᾱ−ᾱ ᾱ −1 −1 1 β β−β . −1 −1 1−α−α α
χ14 2 2−2 .−ᾱ−ᾱ ᾱ−α−α α β β−β .−α−α α −1 −1 1 β̄ β̄−β̄ . −1 −1 1−ᾱ−ᾱ ᾱ
χ15 2 2−2 .−ᾱ−ᾱ ᾱ−α−α α β̄ β̄−β̄ . −1 −1 1−ᾱ−ᾱ ᾱ β β−β .−α−α α −1 −1 1
χ16 2 2−2 .−α−α α−ᾱ−ᾱ ᾱ β β−β . −1 −1 1−α−α α β̄ β̄−β̄ .−ᾱ−ᾱ ᾱ −1 −1 1
χ17 2 2−2 . −1 −1 1 −1 −1 1 β̄ β̄−β̄ .−α−α α−α−α α β β−β .−ᾱ−ᾱ ᾱ−ᾱ−ᾱ ᾱ
χ18 2 2−2 . −1 −1 1 −1 −1 1 β β−β .−ᾱ−ᾱ ᾱ−ᾱ−ᾱ ᾱ β̄ β̄−β̄ .−α−α α−α−α α
χ19 3 3 3−1 . . . . . . 3 3 3 −1 . . . . . . 3 3 3 −1 . . . . . .
χ20 3 3 3−1 . . . . . . γ γ γ −α . . . . . . γ̄ γ̄ γ̄−ᾱ . . . . . .
χ21 3 3 3−1 . . . . . . γ̄ γ̄ γ̄ −ᾱ . . . . . . γ γ γ−α . . . . . .
χ22 8−1 . . −1 2 . −1 2 . 8 −1 . . −1 2 . −1 2 . 8 −1 . . −1 2 . −1 2 .
χ23 8−1 . .−ᾱ β .−α β̄ . 8 −1 . .−ᾱ β .−α β̄ . 8 −1 . .−ᾱ β .−α β̄ .
χ24 8−1 . .−α β̄ .−ᾱ β . 8 −1 . .−α β̄ .−ᾱ β . 8 −1 . .−α β̄ .−ᾱ β .
χ25 8−1 . .−ᾱ β .−α β̄ . δ−α . . −1 2 .−ᾱ β . δ̄−ᾱ . .−α β̄ . −1 2 .
χ26 8−1 . .−α β̄ .−ᾱ β . δ̄−ᾱ . . −1 2 .−α β̄ . δ−α . .−ᾱ β . −1 2 .
χ27 8−1 . . −1 2 . −1 2 . δ−α . .−α β̄ .−α β̄ . δ̄−ᾱ . .−ᾱ β .−ᾱ β .
χ28 8−1 . . −1 2 . −1 2 . δ̄−ᾱ . .−ᾱ β .−ᾱ β . δ−α . .−α β̄ .−α β̄ .
χ29 8−1 . .−α β̄ .−ᾱ β . δ−α . .−ᾱ β . −1 2 . δ̄−ᾱ . . −1 2 .−α β̄ .
χ30 8−1 . .−ᾱ β .−α β̄ . δ̄−ᾱ . .−α β̄ . −1 2 . δ−α . . −1 2 .−ᾱ β .

where we have α = w2, β = 2w, γ = 3w2, δ = 8w2 for w = e2πi/3.

Proposition 2.3. The character of the representation of G648 on the space
H0(72.P2

fake, 3H) is given by

χ11 + χ12 + χ19 + χ23 + χ24 + χ25 + χ26 + χ27 + χ28 + χ29 + χ30. (2.2)

Proof. By the Holomorphic Lefschetz Formula, together with the trivial rep-
resentation of G648 on H2(72.P2

fake, 3H), our representation must restrict to

the regular representation both for G72 and for Ĝ72, since every nonidentity
element of this group has no fixed points. We use GAP (GAPdataAll) to
compute the restrictions of the characters to these groups and then Math-
ematica (Dim71rep.nb) to find the unique linear combination of characters
of G648 that has this property. �

Proposition 2.4. The dimension 7 subspace of H0(72.P2
fake, 3H) with char-

acter χ11 + χ12 + χ19 can be naturally identified with

H0(8.P2
fake, 3H) ∼= H0(8.P2

fake/C3, 3H).

Similarly, H0(4.P2
fake, 3H) can be identified with χ19.
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Proof. The map 72.P2
fake → 8.P2

fake is a Galois cover, so G648 acts on the

space of holomorphic 2-forms on 8.P2
fake, and the pullback map is compatible

with the action. The subgroup G72 is the kernel of the abelianization map
G648 → C3 ×C3 and is thus built from the conjugacy classes 1a, 2a, 3a and
4a. Then χ11, χ12 and χ19 are characterized by the property that they are
invariant under 3a, i.e. invariant under the normal subgroup C3×C3 of G72.
Then χ19 is further characterized by having trivial action of the conjugacy
class 2a, which is the central involution of Q8. �

3. Technical details: computing the equations.

In this section we comment in more detail on the technical issues encoun-
tered in our process, as sketched in the Introduction.

3.1. Step 1. Let s be a nonzero element of H0(2.P2
fake, 3H). Then s2 ∈

H0(2.P2
fake, 6H) is invariant under the covering involution of the double

cover 2.P2
fake → P2

fake and is thus a pullback of an element of H0(P2
fake, 6H).

Moreover, this section must be invariant with respect to the action of the
central C3. So to find s2, we looked for nonreduced linear cuts of P2

fake in its
bicanonical embedding, which are invariant under an action of a subgroup
of its automorphism group (we did not a priori know which subgroup of
Aut(P2

fake) came from the central C3). We first found such nonreduced cut

modulo 73 by a brute force search using Magma.3 This calculation was
entirely similar to the one in [2, 6, 8]. As a result, we got

Cut = Q0 + 69(Q1 +Q2 +Q3) + 7(Q4 +Q5 +Q6) + 62(Q7 +Q8 +Q9)
(3.1)

where Qi were the variables of the equations of P2
fake from [3].

Our next goal was to lift the equation of the nonreduced cut (3.1) from
Z/73Z to Z/73kZ for increasing powers of k. The previous method, used in
the aforementioned papers was to find some points on the nonreduced cut,
and enforce the condition of the cut being singular on (lifts of) the points as
k grows. However, this approach was unavailable in our case because there
were no points on X defined over Z/73Z. While we could have presumably
worked over a finite field extension, we found the following easier alternative
approach.

3Unfortunately, 73 was the smallest prime of the form 9k+1 where the equations of [3]
gave a reduced surface with the correct Hilbert polynomial, and it took a considerable
amount of time to go through all of the cases.



FINDING EQUATIONS OF THE FAKE PROJECTIVE PLANE (C18, p = 3, {2I}) 9

We used Magma to compute the ideal of the radical of the nonreduced
cut of P2

fake modulo 73. One of the equations was

F = Q3Q6 + 61Q4Q6 + 29Q5Q6 + 53Q2
6 + 9Q1Q7 + 18Q2Q7 + 42Q3Q7

+32Q4Q7 + 15Q5Q7 + 9Q6Q7 + 11Q2
7 + 25Q1Q8 + 3Q3Q8 + 13Q4Q8

+18Q5Q8 + 21Q6Q8 + 11Q7Q8 + 44Q2
8 + 49Q1Q9 + 63Q2Q9 + 53Q3Q9

+12Q4Q9 + 26Q5Q9 + 12Q6Q9 + 51Q7Q9 + 68Q8Q9 + 44Q2
9

in the variables Qi of the bicanonical embedding of P2
fake modulo 73. Then

F 2 was in the ideal of the cut, and we wrote

F 2 =

84∑
i=1

HiEi + CutR (3.2)

as polynomials in Q0, . . . , Q9. Here Ei are the equations of P2
fake (cubic in

Q), Hi are unknown linear combinations of Q, and R is an unknown cubic
polynomial in Q. We originally computed a relation (3.2) modulo 73 and
then lifted it modulo 73k for increasing powers of k. At each step k → k+ 1
we had a system of linear equations modulo 73 on the corrections to the
coefficients of Hi, F and R. We used Mathematica to solve it, and picked
the initial solution which was automatically taking case of making some
coefficients zero. We went up to 7330 which gave a good approximation to
coefficients of the nonreduced cut over the complex numbers.

There is a standard way of guessing an algebraic number from its p-adic
approximation. We used it to see that the nonreduced cut is given by

Q0 − (−773+16 i
√
2)

66449 (Q1 +Q2 +Q3)−W (−50345−26294 i
√
2)

132898 (Q4 +Q5 +Q6)

− (50345+26294 i
√
2)

132898W (Q7 +Q8 +Q9)
(3.3)

where W = (13(2 − i
√

2))
1
3 . The details of the above calculation are in the

Mathematica file Step1.nb.

3.2. Step 2. We work out Steps 2 and 3 in the Mathematica file Steps23.nb.
By simply scaling Q-s by the appropriate powers of W , we arranged the cut
of (3.3) to be defined over Q(

√
−2) with equations of P2

fake still defined
over this field. However, it was convenient for us to enlarge the field to
Q(
√
−2,
√
−3) and to pick a basis of eigenvectors of the C3 × C3 action on

H0(P2
fake, 6H), with the new variables called R0, . . . , R9. We made the cut

to be R1 +R4 +R7, made one of the fixed points of a C3 action to be

(0 : 1 : 1 : 1 : 0 : 0 : 0 : 0 : 0 : 0)

and made the tangent space to the cone over P2
fake at this point to be

generated by

(0, 1, 1, 1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 1, 1, 1, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 1, 1, 1).

These conditions fixed the basis of Ri, and the resulting equations of P2
fake

had very small coefficients in Z[
√
−2,
√
−3].
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3.3. Step 3. The torsion subgroup of the Picard group of P2
fake is isomor-

phic to C13 × C2 × C2, and the nontrivial two-torsion elements are acted
upon by an order 3 automorphism of P2

fake which scales R4, R5, R6 by the

primitive third root of unity w = 1
2(−1 + i

√
3) and scales R7, R8, R9 by w2.

Each 2-torsion element in the Picard group of P2
fake gives a nonreduced cut

of it in the bicanonical embedding, which are thus

R1 +R4 +R7, R1 + wR4 + w2R7, R1 + w2R4 + wR7, (3.4)

in the Ri coordinates.

The field of fractions of the ring
⊕

k≥0H
0(4.P2

fake, 3kH) is obtained from

that of
⊕

k≥0H
0(P2

fake, 6kH) by attaching the square roots of the linear

forms (3.4). The sections of H0(2.P2
fake, 6H) of the double cover can be

then obtained as pullbacks of Ri and as

F (R)√
R1 + wR4 + w2R7

√
R1 + w2R4 + wR7

where F (R) are quadratic polynomials in Ri with the property that they
are zero on the loci of zeros of R1 + wR4 + w2R7 and R1 + w2R4 + wR7.
These have been computed and given the names U0, . . . , U19 where Ui = Ri
for 0 ≤ i ≤ 9 form a basis of the subspace of invariants of the covering
involution of 2.P2

fake → P2
fake, and the U10, . . . , U19 form a basis of the

(−1)-eigenspace. Adding the C3 translates of the latter gave us a basis
U0, . . . , U39 of H0(4.P2

fake, 6H) in terms of Ri and the above square roots.
We also extend the action of C3 × C3 to these Ui.

Remark 3.1. We computed equations of the double cover 2.P2
fake, i.e. the

relations among U0, . . . , U19 and got the expected dimension 100 space of
these equations. We suspect that these quadratic equations cut out 2.P2

fake

in its bicanonical embedding, but we did not try ascertain that (and it also
may be beyond the reach of our hardware). We did not use these equations
later in our computations.

3.4. Step 4. Step 4 takes a lot of work, and it is done in Step4.nb.

We first recall that 8.P2
fake is acted upon by

C3 × SL(2,Z/3Z)

so that the quotient by the normal 2-Sylow subgroup Q8 of SL(2,Z/3Z)
induces the automorphism action of C3 ×C3 on P2

fake. By our construction

of Step 3, we have also lifted the action of C3 ×C3 to act on 4.P2
fake, which

is the quotient of 8.P2
fake by the central involution σ ∈ Q8. Holomorphic

Lefschetz formula allows one to figure out the action of C3 × SL(2,Z/3Z)
on H0(8.P2

fake, 3H) and there exist, unique up to scaling, two elements s1
and s2 of H0(8.P2

fake, 3H) with the following properties.
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• Both si are (−1)-eigenfunctions for the covering involution σ of
8.P2

fake → 4.P2
fake.

• Both si are invariant with respect to the central C3.
• Both si are eigenfunctions for the action of the other C3, one with

weight w and the other with weight w2.

Consequently, f0 = s1s2, f1 = s21 and f2 = s22 are invariant with respect to
σ and are pullbacks of elements of H0(4.P2

fake, 6H) (i.e. linear combinations

of U0, . . . , U39) that satisfy

f20 = f1f2 (3.5)

and have prescribed weights with respect to the C3×C3 action on Ui. This
resulted in a system of 26 quadratic equations on 16 unknown coefficients
of fi. After a fortunate choice of two additional scaling equations (since
si are only up to scaling, we can scale two out of three fi), Mathemat-
ica readily solved the resulting equations in 14 variables numerically and
then recognized the results as good approximations to algebraic numbers in
Q(
√
−2,
√
−3).

There is a two-dimensional subspace of H0(8.P2
fake, 3H) which is anti-

invariant with respect to σ and is invariant with respect to both C3 groups.
For an element v of it, we knew where v2 and vs1 were, which allowed us to
find it. This gave us seven linearly independent elements of H0(8.P2

fake, 3H),

namely the square roots of (3.4), and four other of the form Fi(U)/
√
f1 for

a solution f1 of (3.5) and a linear function Fi of U0, . . . , U39. We denoted
this basis by V0, . . . , V6.

By Proposition 2.2 sections V0, . . . , V6 of H0(8.P2
fake, 3H) are all invariant

with respect to the action of the central C3 (this can also be seen by direct
examination). As a consequence, they are pullbacks of the sections of the
canonical line bundle on the singular surface 8.P2

fake/C3 with 24 singularities
of type A2. We found equations on Vi, namely a 4-dimensional space of cubic
equations and a 58-dimensional space of quartic equations. These equations
allowed us to find points on the canonical image of 8.P2

fake (or 8.P2
fake/C3)

with high accuracy.

The next step was to lift the action of C2 × C2 on 4.P2
fake to an action

of Q8 on 8.P2
fake. Specifically, this meant finding an order 4 automorphism

which lifted the order 2 automorphism of 4.P2
fake. We also knew that its

action on the dimension four subspace spanned V3, . . . , V6 was traceless, and
that the action permuted the points with V1 = V2 = 0. Taken together, this
information allowed us to find the desired order 4 automorphism.

Our next goal was to understand the space H0(8.P2
fake, 6H). We have

dimH0(8.P2
fake, 6H) = 80, so it would be rather useless to try to compute

equations among these, since solving systems of nonlinear equations in 80
variables is well beyond the capabilities of our available hardware. Instead,
we had to settle for being able to compute a lot of points in the image
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8.P2
fake → CP79 with high accuracy. The approach we took was to first

compute points on 8.P2
fake/C3 where we do have equations and then compute

the values of elements H0(8.P2
fake, 6H) on them.

We observed that R0, R1, R4, R7 can be easily written as degree two poly-
nomials in Vi. In contrast, R2 is not invariant under the central C3 and
can therefore not be written as a rational function in Vi. However, R3

2

can be written as a rational function in R0, R1, R4, R7 (namely as a ra-
tio of a degree 12 polynomial and a degree 9 polynomial), and we com-
puted it. Similarly, we computed rational functions in these variables for
R2R3, R2R6, R2R9, R

2
2R5, R

2
2R8. Recall that Ui for 0 ≤ i ≤ 39 are written as

rational functions in Ri and V0, V1, V2. Therefore, for given (high accuracy)
values of Vi, we can find three values for R2 and then find values of the rest
of Ri and U0, . . . , U39 for each of three values of R2.

We then computed the subspace of H0(8.P2
fake, 6H) of sections that are

anti-invariant with respect to the covering involution σ. We did this by
considering rational functions in V -s and R2, of total V -degree 2, which are
zero on the curves V0 +V1 +V2 = 0 and V3 = 0, divided by (V0 +V1 +V2)V3.
We first got a database of points on these two curves, and then computed
vanishing conditions. The calculation was performed in Step4.nb and is split
into three cases according to the character of the central C3. Specifically,
for the trivial character, we looked for degree four polynomials in Vi which
vanish at the aforementioned curves. For the other characters, we looked for
linear combinations of products of quadratic polynomials in V with some
sections of H0(4.P2

fake, 6H) with the same central weight.

Afterwards, we computed the action of the two C3-s (the central one
and the chosen subgroup of SL(2,Z/3Z)) on the space H0(4.P2

fake, 6H) of

dimension 80. We picked an eigenbasis of it, denoted by Ũ0, . . . , Ũ79. Finally,
we computed points on 8.P2

fake with accuracy of several thousand digits, in
preparation for the next step.

3.5. Step 5. Naturally, this is the trickiest step of the whole paper, worked
out in Step5.nb.

The map 72.P2
fake → 8.P2

fake is a Galois cover with the covering group

C3 ×C3, and we have a good understanding of H0(72.P2
fake, 3H) by Propo-

sition 2.3. In what follows, we will denote the corresponding subspaces of
H0(72.P2

fake, 3H) as H0(72.P2
fake, 3H)11, . . . ,H

0(72.P2
fake, 3H)30, according

to the index of the irreducible character. Note that each of the 8-dimensional
irreps of H0(72.P2

fake, 3H)i for 23 ≤ i ≤ 30 has one-dimensional eigenspaces
for all non-trivial characters of the covering group. Indeed, all nonzero ele-
ments of this group are in the conjugacy class 3a and thus have trace (−1).
We also observe that each of these representations is acted upon by the
central involution σ of Q8 which permutes C3×C3 eigenspaces by inverting
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eigenvalues, because it corresponds to (−Id) in SL(2,Z/3Z). The following
proposition is the key to our approach.

Proposition 3.2. Consider an order 3 element h of SL(2,Z/3Z) and its
action on the 3-torsion subgroup C3 ×C3 of Pic(8.P2

fake). Suppose that the

character (w, 1) of the covering C3 × C3 corresponds to the eigenvector of
h in C3 × C3. Let f1 and f2 = σ(f1) be a (w, 1)-eigenvector and a (w2, 1)-
eigenvector for the covering C3×C3 in the space H0(72.P2

fake, 3H)29, respec-

tively. Likewise, let g1 and g2 = σ(g1) be an (w, 1)- and (w2, 1)-eigenvectors
in the space H0(72.P2

fake, 3H)30. Then s1 = f1f2, s2 = f1g2, s3 = g1f2,
s4 = g1g2 are invariant under the covering group and can be thought of as
elements of H0(8.P2

fake, 6H). These sections si have the following properties.

• s1s4 = s2s3
• σ(s2) = s3
• Sections s1, s2, s3, s4 have weights (w, 1, 1, w2) respectively for the

central C3 action on H0(8.P2
fake, 6H).

• The weights of s1, s2, s3, s4 for the action of h ∈ SL(2,Z/3Z) are
(w2a, wa+b, wa+b, w2b) for some a and b in Z/3Z.

Proof. The first two statements are immediate from the construction. To
prove the third statement, observe that the generator of the central C3 has
trace 8w2 in χ29 and 8w in χ30 (after an appropriate choice of generator or a
switch of χ29 and χ30). Thus fi have eigenvalues w2 and gi have eigenvalues
w.

The last statement is the most delicate. Since h preserves the corre-
sponding element of the Picard group, its action preserves the corresponding
eigenspaces of H0(72.P2

fake, 3H)29 and H0(72.P2
fake, 3H)30. Thus fi and gi

are eigenvectors for its action, with eigenvalues wa and wb for some a and
b. �

Remark 3.3. There is nothing particularly special about using χ29 and
χ30 in Proposition 3.2. In fact, 29 can be replaced by 25 or 27 and 30 can
be replaced by 26 or 28. Since we do not know which values of a and b
correspond to which subrepresentations, as we get a solution (s1, . . . , s4) we
will not know exactly which subrepresentations they come from.

For each pair of values (a, b), the conditions of Proposition 3.2 can be
translated into a system of polynomial equations on the coefficients of si in
the bases of the corresponding subspaces of H0(8.P2

fake, 6H). The number
of variables is generally under 20, and we were able to solve one the systems.
Specifically, we solved it modulo 4363, which is a large prime for which both
(−2) and (−3) are quadratic residues, then lifted the solution to powers of
4363 and finally used this p-adic approximation of solutions to realize them
as algebraic numbers.

Getting an equation of the form s1s4 = s2s3 is indicative of some ad-
ditional divisor classes, given by (s1, s3) and (s1, s4). We computed the
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corresponding divisors and found that a third power can be written as a
section of H0(8.P2

fake, 9H). Specifically, we were able to write it as a degree

3 polynomial (called goodrr in the Mathematica file Step5.nb) in V0, . . . , V6,
since a third power is also invariant with respect to the central C3. In view
of Remark 3.3, we do not know precisely which irreducible subrepresenta-
tion the corresponding section f1 ∈ H0(72.P2

fake, 3H) lies in, but it is not
important to us. Indeed, we know from Proposition 2.1 that unramified
triple covers of 8.P2

fake come from 72.P2
fake, and we know that by adding f1,

and its Q8-translates to the function field of the cone over 8.P2
fake, we will

get the function field of the cone over 72.P2
fake.

More precisely, we computed a basis of a dimension 8 subspace of elements
of H0(8.P2

fake, 6H) which vanish on f1 = 0 and were thus able to describe a

set of 8 linearly independent sections in H0(72.P2
fake, 3H) as R/f1 for R in

this subspace. Then Q8 translates of these forms, together with (pullbacks
of) Vi ∈ H0(8.P2

fake, 3H) gave the basis of H0(72.P2
fake, 3H). To be able to

really compute values of elements of H0(72.P2
fake, 3H) on points of 72.P2

fake

we needed to be careful in identifying values of Q8-translates fi of f1. While
we knew their cubes, it was not clear which cubic roots had to be taken. This
issue was solved by computing products fifjfk which lie in H0(8.P2

fake, 9H)
and using the values of the products to pick correct values of all but two fi
(first two fi can be taking arbitrarily, each choice giving one of the preimage
points of C3 × C3 cover 72.P2

fake → 8.P2
fake).

In order to construct the surfaces 9.P̂2
fake and P̂2

fake we found a lift

of the action of C3 × SL(2,Z/3Z) from 8.P2
fake to 72.P2

fake by picking
lifts of the generators. We then averaged over Q8 to get values of sec-

tions of H0(9.P̂2
fake, 3H), called W1, . . .W8. We similarly averaged over

C3 × SL(2,Z/3Z) to get a basis of H0(P̂2
fake, 6H), called Z0, . . . , Z9. We

computed equations on Zi, which were dim 84 space of cubics in Zi, with
coefficients in Q(

√
−2,
√
−3). In fact, we had to assume that the equations

would lie in this field and still had to use several thousand digits of accuracy
in our computation of points. We also computed the values of four pairwise

products of Wi which lie in H0(P̂2
fake, 6H) which gave natural reducible lin-

ear cuts of P̂2
fake in its bicanonical embedding. These were used in the next

step.

3.6. Step 6. At this point we had putative equations of P̂2
fake but the co-

efficients were large and were defined over Q(
√
−2,
√
−3). Both of these

features made working with this surface difficult. We followed a rather ad
hoc process which somewhat surprisingly allowed us to take care of both
issues.
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First or all, for each pair of reducible cuts, found in Step 5, we computed

their 36 intersection points on P̂2
fake. We speculated that Z0 had to be

defined over Q(
√
−2), in the sense that there is a model of P̂2

fake over this

field where Z0 is defined over it. We normalized the 36 points of intersections
to have Z0 = 1. Then we separated these 36 points according to their
field of definition. We added these points to get linear combinations of the
basis dual to Zi with coefficients in the field Q(

√
−2,
√
−3). As the pairs

varied, we ended up picking 21 such points. We also speculated that Z1

should be defined over Q(
√
−2) and used natural linear combinations of

the above 21 points to get 13 natural points in C10. We then picked 10
linearly independent ones and used a linear change of variables so that new
sections were a dual basis. The resulting equations were indeed defined over
Q(
√
−2), but the coefficients were up to 8 × 103 digits long. The process

was further refined by picking a small Q(
√
−2)-linear combination of the

above 10 points defined over Q(
√
−2,
√
−3). That led to equations in the

new variables Y0, . . . Y9 which were in Q(
√
−2) and had coefficients a few

hundred digits long. Finally, we traded the number of nonzero terms for
the size of the coefficients by picking linear combinations of the equations
via a lattice reduction algorithm. This led to the final output where the
equations were only 20 to 30 decimal digits long, in Z[

√
−2]. It seems

plausible that one can reduce the coefficients further by picking a better

basis of H0(P̂2
fake, 6H), but we were unable to do so.

The details are in the file Step6.nb.

3.7. Step 7. The techniques of the previous steps used probabilistic ap-
proaches and approximate calculations, and the overall complexity of the
code was also formidable. Fortunately, it is possible to verify that the
surface we obtained is a fake projective plane by doing exact and rela-
tively short calculations in Magma. We can then confidently identify it
as (C18, p = 3, {2I}). The method of verification that the surface is an
FPP has not changed much since [4]. Specifically, we first observed that the
surface S in question has the correct Hilbert polynomial. Then we showed
that it is smooth by picking three random minors of the Jacobian matrix
and checking that adding them to the equations gives zero Hilbert polyno-
mial over a finite field. For better or for worse, we used the same minors as
in [8], and it worked. We also computed the dimension of the cohomology
spaces of the structure sheaf and the first cohomology space of the cotan-
gent bundle. This allowed us to conclude that the surface is an FPP. Then
it suffices to compute, as in [7], that h2(X, 2KX(−1)) = 0 to show that our
embedding is precisely the bicanonical one. As a slight improvement over
previous approaches, we did the calculations entirely in Magma, as opposed
to a mix of Magma and Macaulay2. The details are in Step7Magma (Hilbert

polynomial of P̂2
fake over the number field) and Step7Magma4363 (the rest).
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