FINDING EQUATIONS OF THE FAKE PROJECTIVE
PLANE (C18,p = 3,{2I})

LEV BORISOV AND BOJUE WANG

ABSTRACT. We find explicit equations of a new pair of fake projective
planes, labeled by (C18,p = 3,{2I}) in the Cartwright-Steger classifica-
tion. Our method involves starting with known equations of a commen-
surable fake projective plane (C18,p = 3,0, d3D3) and working through
a chain of cyclic covers and quotients to get to the new one.
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1. INTRODUCTION.

Complex projective algebraic surfaces X are classified according to their
Kodaira dimension x(X). The case k(X) = 2, when X is a surface of
general type, is arguably the least understood. Among such surfaces one
is especially interested in those with small Hodge numbers, in particular
RYO(X) = h?9(X) = 0, see for example the review [1]. These are further
separated by the square of their canonical class K%, and the extreme case
Kg( = 9 occurs for the so-called fake projective planes (from here on called
FPPs), which are characterized by having the same Hodge numbers as the
usual projective plane CP2.

First example of an FPP was given by Mumford in [19], using the method
of 2-adic uniformization. Research over the next several decades by multiple
1
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authors (see in particular [10,/12-16420]) led to the full classification of all
FPPs as quotients of the complex 2-ball B2 by explicit finitely presented
arithmetic groups in [10]. There are exactly 100 FPPs up to isomorphism,
gathered into 50 pairs of complex conjugate surfaces.

Unfortunately, a ball quotient description does not directly lead to any
explicit equations of an FPP in its embedding into a projective space. First
such equations of an FPP in its bicanonical embedding into CPY were found
in [7]. Since then, L.B. and multiple coauthors have found explicit equa-
tions of ten more complex conjugate pairs of FPPs [2-5]. The current paper
continues this program by finding explicit equations of an FPP labeled by
(C18,p = 3,{2I}) in the Cartwright-Steger classification. Our method in-
volves starting from known equations of a commensurable FPP and using
it to produce the equations of a new FPP. Even though it is similar to the
method of |4] and [5], we had to overcome significant computational diffi-
culties that arose because of the large degree of the common Galois cover of
the two FPPs.

1.1. General description of the process. The FPP indexed by (C'18,p =
3,{2I}) is known to be commensurable to the FPP indexed by (C18,p =
3,0,ds3Ds) in Cartwright-Steger list whose equations were found in [3] several
years ago. For the remainder of the paper, we will adopt the following
notation.

Notation 1.1. We write P?ake for the fake projective plane in the pair

(C18,p = 3,0,d3D3) whose equations were found in [3]. We write P?ake for
the commensurable plane in the class (C18,p = 3,{21}) whose equations
we find in this paper.

The following results follow from the computations of Cartwright and
Steger and additional GAP [11] calculations we did in the file GAPdataAll
of [9]. The fake projective plane IP’?@ ake Das an automorphism group C3 x C3

and ]P’fcake is a non-Galois degree 9 cover of ]P)?cake/Ci), x C3. In the other
direction, there is a surface which we denote by 7 Z.P?ake which is a common

—

Galois cover of P?ak . and P?ake.

Proposition 1.2. There is a surface 72.]11’?%,fe with an automorphism group

Gleus of order 648 = 233* which is isomorphic to the direct product of Cs
and the semidirect product of SL(2,7Z/37) and C5 x C3 (with the canonical
action of the former on the latter)

G648 = 03 X (SL(Q,Z/?)Z) X (Cg X Cg)) .

The fake projective planes P?ake and IP’? uke are the quotients of 72.]13’30(116e by
the normal subgroup of Gg4g of order 72

Gra = {1} x (Qs x (C3 x C3))
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and the nonnormal subgroup of Gg4g of order 72

é72 = C?) X (SL(27Z/3Z) X {1})7
respectively. Here Qg is the normal 2-Sylow subgroup of SL(2,Z/3Z), iso-
morphic to the quaternion group.

Proof. This is a result of the GAP computation in GAPdataAll, see [9]. O

In this paper we consider the following diagram of surfaces and Galois
covers.

72.P% ake
e N\
2 —_—
8.P% uke 9.P% oke
LN N\
APtake  8Piakc/Cs P2 ke
YRR
2P% ke 2P%are 2Pake

N
P?‘ake
Here the surface 8.]P’?cak . is the quotient of 72.[?’3%,% by the normal subgroup

{1} x ({1} x (C5 x C3))
of Ggsg. This surface is an unramified Qg Galois cover of IP’?C ake and 4.]?? ake
and 2.P§ake correspond to the center and three index two subgroups of g,
respectively. Three different covers 2.[P’?ake — ]P)? ake correspond to 2-torsion
line bundles on IP’? ake that are permuted by an order three automorphism of
Pf‘ake' The surface 8'P?cake /C3 is a singular quotient of 8.P?ak6 by the image

of the central C3 of Ggag (the first C5 factor). It is used in intermediate cal-
culations to get enough points on 72.P§ak . with high accuracy. The surface

—

9.}?? ake 18 the quotient of 72.}?% ake DY the 2-Sylow subgroup of Geas
{1} x (Qs x {1}).

—

It is a C3 x (3 unramified Galois cover of ]P’? ake> Which we used to simplify

—

the equations of ]P’? ke

The method of the paper is to start with the known equations of Pfcake,

make our way up to 72.1?’3( oke and then take invariants to get down to IP? ke
We start with equations of ]P’?cak,e found in [3]. They describe the image of
P?‘ake in its bicanonical embedding into CPY as being cut out by 84 cubic
equations in 10 variables. The coefficients (in Z[\/—2]) are about 100 digits
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long. There is an explicit C3 x C3 action on CP? that gives automorphism
of ]P’?C ake-

Step 1. We find a nonreduced linear cut on P2 wke Which corresponds
to the square of a 2-torsion element of the Picard group of }P’?pake. This
is done by first running an exhaustive search modulo 73, then lifting the
nonreduced cut it to 73-adics to high enough accuracy and finally recognizing
the resulting coefficients as algebraic numbers.

Step 2. We use the nonreduced linear cut above to simplify the equations
of ]P’?ake by picking a better basis of HY (P?ake, 2K). We also choose to make
it a basis of C3 x C3 eigenvectors. The downside is that the equations now

have coefficients in Q(v/—2,v/—3) which will be the case for most of the
process.

Step 3. We use the same cut to find equations of the double cover
2.}P’? uke 1 its putative bicanonical embedding into CP'. It is cut out by 100

quadratic equations in 20 Variablesﬂ We also use the known automorphism
group of IP’? oke b0 construct 4.IF’3¢ ake- We do not try to compute the equations
of its putative bicanonical embedding, as there would be too many of them,
but we develop a way of constructing points of its image in CP3 with high
accuracy.

Step 4. We construct the double cover S.P%ake of 4.]P’?cak,e. In fact, we first
construct its quotient 8.}}”% ake/ C3 which is likely the image of the canonical
map S.Pfcake — (CIP’6E| It is given by 4 cubic and 58 degree four equations in

7 variables. We also find the action of Qg on 8.1?? ake/ C3. We then find a way
of constructing points with high accuracy in what is likely the bicanonical
embedding of S.P?ake into CP™.

Step 5. In what is arguably the most delicate part of the calculation,
the C'5 x C5 cover 72.P?ake — 8.P%ake is determined by finding a relation
among certain bicanonical sections on 8.]?? ake- As aresult, we find a basis of
the 71-dimensional space H 0(72.[[”?&,%, K) in terms of algebraic functions in
HO(S.IP’?Cake, 2K) and HO(S.P%ake, K). We also find the values of the elements
of this basis on some random points, with very high accuracy. We find the
action of Ggyg on this 71-dimensional space, in particular we find the action
of the subgroup

Gra = C3 x (SL(2,Z/3Z) x {1}).
We compute the linear invariants of the g action on the dimension 71 space

to get points in the putative canonical embedding of 9.]P’3¢ ake DO CP7. We
also compute the quadratic invariants of the action of G75. We use C3 x C3

IWe do not actually verify that it is an embedding, but it is highly likely
2Again, we do not actually verify that this is the image, but it factors through it.
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—

invariant products of elements of H° (Q.P? ake» I) to compute special curves

—

2
on IF’fake.

Step 6. Looking at the intersections of the above special curves, we find

a basis of H O(IF’?c aker 2IC) where the equations are defined over the smaller
field Q(+/—2) and have smaller coefficients.

Step 7. We use the usual methods to verify that the equations we obtain
indeed cut out a fake projective plane.

1.2. Disclaimers, acknowledgements and further directions. We de-
scribe most of our surfaces in terms of multiple points in the images of their
maps into a projective space, computed with high accuracy (hundreds to
thousands of decimal digits). Thus our intermediate calculations cannot be
deemed fully rigorous, which necessitates an eventual verification that the
surface we obtain is indeed an FPP in a bicanonical embedding. We have
use GAP, Magma and Mathemaica [11,/17/18] with most of the computations
performed in the latter.

We believe that our results may allow us to eventually compt&e\all three
remaining pairs of FPPs that are commensurable to IP’?C ake and ]P’?c aker LThey
are labeled by (C18,p = 3,{2}, D3), (C18,p = 3,{2}, (dD)3) and (C18,p =
3,{2}, (d>D)3) in Cartwright-Steger classification.

2. TECHNICAL DETAILS: GROUP-THEORETIC CALCULATIONS.

In this section we collect the results of GAP calculations and related
computations of characters of finite group representations.

Proposition 2.1. The torsion subgroups of the Picard groups of the covers
of fake projective planes above are given by the following table.

D2
IP)fake

OB |

P?‘ake ‘ 4']??‘(1]66 8'P3‘ake ‘ 72’P?‘ake

C%XClg.CSXC%.CgXCL‘)’.CSXCgXCl?,.C%XCgXClg.CQXC%
(2.1)

Proof. Computed by GAP. O

Recall that there is a divisor class H on ]P’?cak . so that its canonical class
is K = 3H. We abuse the notation and use K and 3H interchangeably
throughout the rest of the paper to denote the canonical line bundles (or
divisor classes) on various surfaces. Note that the corresponding line bundles
come with a natural linearization with respect to the automorphism group
of the surface.

Proposition 2.2. We have the following dimensions of the spaces of global
sections of the canonical and the bicanonical invertible sheaves O(3H) and
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O(6H) on the surfaces mentioned above.

dim¢c H°(-,3H) | dim¢ H°(-,6H)
P?‘ake’ P?‘ake 0 10
2.P% ke 1 20
4P% ke 3 40
8.P%ake 7 80
8.P% 41/ C3 7 32
72.P% 1 71 720
9.P% 1e 8 90

Proof. The case of S.P?ake /C3 is special since this surfaces is singular, and
it also does not cover a fake projective plane. We will treat it last.

For an n-fold unramified cover X of a fake projective plane, we have
X(X,kH) = 5(k—1)(k—2) by the Riemann-Roch theorem. Since Kx = 3H
is ample, for k& > 3 Kodaira vanishing theorem assures that h°(X,kH) =
X(X,kH). Thus, h°(X,6H) = 10n which gives the values of the right col-
umn of the above table. Similarly, we have

hY(X,3H) = x(3H) — h*(X,3H) + h' (X, 3H)
=n—h?3X)+hM2(X) =n -1+ h"0(X).
Since the fundamental groups of the above surfaces have finite abelianization
by Proposition we have h?(X) = 0. This implies the values in the
middle column of the above table.

The dimensions of H(8.P%,,,/Cs,3H) and H°(8.P%,, /C3,6H) are the
dimensions of the spaces of invariants for the central C3 action on S.Piake.
Note that the action of the generator g of this C5 on IP’% ake has 3 fixed points
of type %(1, 2), see [14]. Since g also acts on 2.Pfcake, its action on the two-
point preimage of every fixed point on }P’?@ake must be trivial, so g has 6 fixed
points of the same type on Q.P?ake. Similarly, its action on 4.[??61,66 has 12
fixed points and its action on S.Pfcake has 24 fixed points. Each of these
singular points has the same contribution to Z?ZO(—l)iTr(g, HY(X,3H)) in
the the Holomorphic Lefschetz formula. We know that this sum is 1 for
X = P}ake’ therefore it is equal to 8 for X = 8']??%1@67 ie.

2

> (—1)'Tx(g, H' (8P}, 3H)) = 8.
=0

Consequently, all sections of H° (S.P?ake, 3H) are invariant with respect to
the action of g, and the canonical map of SIP’?C ake factors through the quo-
tient surface 8.}P’?cake/03. Since Z?zo(—l)’Tr(g,Hl(S.Pfcake,kH)) depends
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only on k mod 3, we see that the action of g on the 80-dimensional space
H 0(8.P?¢ake, 6H) has invariant subspace of dimension 32 and two spaces of
dimension 24 each of eigenvalues e*27/3. O

In what follows, it will be important for us to understand the represen-
tation of Gesg on the dimension 71 space H0(72.]P’3¢ake,3H). According to

GAP |11], the character table of Gg4s is given by

1 3k6e3l3m 6f12b 3
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where we have o = w?, = 2w, v = 3w?, § = 8w? for w = /3,

Proposition 2.3. The character of the representation of GGg4g on the space
HO(72.IP’§ake, 3H) is given by

X11 + X12 + X19 + X23 + X24 + X25 + X26 + X27 + X28 + X20 + X30-  (2:2)
Proof. By the Holomorphic Lefschetz Formula, together with the trivial rep-

resentation of Ggqg on H 2(72.1?3@ ake> SH), our representation must restrict to

the regular representation both for Gr79 and for @72, since every nonidentity
element of this group has no fixed points. We use GAP (GAPdataAll) to
compute the restrictions of the characters to these groups and then Math-
ematica (Dim71rep.nb) to find the unique linear combination of characters
of Ggqg that has this property. O

Proposition 2.4. The dimension 7 subspace of H%?Q.P?ake, 3H) with char-
acter x11 + x12 + X19 can be naturally identified with

HO(8. P10, 3H) = H(8.P% 1.,/ Cs, 3H).
Similarly, H(4.P%,;,,3H) can be identified with x19.
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Proof. The map 72.P?ake — S.Pfcake is a Galois cover, so Gg4g acts on the
space of holomorphic 2-forms on 8.1?’30 akes and the pullback map is compatible
with the action. The subgroup Gr is the kernel of the abelianization map
Geag — C35 x Cs and is thus built from the conjugacy classes la, 2a, 3a and
4a. Then x11, x12 and x19 are characterized by the property that they are
invariant under 3a, i.e. invariant under the normal subgroup C3 x C3 of G72.
Then x19 is further characterized by having trivial action of the conjugacy
class 2a, which is the central involution of Qs. O

3. TECHNICAL DETAILS: COMPUTING THE EQUATIONS.

In this section we comment in more detail on the technical issues encoun-
tered in our process, as sketched in the Introduction.

3.1. Step 1. Let s be a nonzero element of HO(Q.Pfcake,SH). Then s? €
H O(Q.Pffake,GH ) is invariant under the covering involution of the double
cover 2.[[”?%,% — P?‘ake and is thus a pullback of an element of HO(IP’fcake, 6H).
Moreover, this section must be invariant with respect to the action of the
central C3. So to find s2, we looked for nonreduced linear cuts of IP’?c ake 11 itS
bicanonical embedding, which are invariant under an action of a subgroup
of its automorphism group (we did not a priori know which subgroup of
Aut(]P’fc ake) came from the central C3). We first found such nonreduced cut

modulo 73 by a brute force search using Magmaﬁ This calculation was
entirely similar to the one in [2.|6,8]. As a result, we got

Cut = Qo +69(Q1 + Q2 + Q3) + 7(Qs + Q5 + Qg) + 62(Q7 + Qs + Q(9) )
3.1

where (; were the variables of the equations of IP’?C ke from [3].

Our next goal was to lift the equation of the nonreduced cut from
Z]T3Z to Z) 73%7, for increasing powers of k. The previous method, used in
the aforementioned papers was to find some points on the nonreduced cut,
and enforce the condition of the cut being singular on (lifts of) the points as
k grows. However, this approach was unavailable in our case because there
were no points on X defined over Z/73Z. While we could have presumably
worked over a finite field extension, we found the following easier alternative
approach.

3Unfortunately, 73 was the smallest prime of the form 9%k + 1 where the equations of [3]
gave a reduced surface with the correct Hilbert polynomial, and it took a considerable
amount of time to go through all of the cases.



FINDING EQUATIONS OF THE FAKE PROJECTIVE PLANE (C18,p = 3,{2I}) 9

We used Magma to compute the ideal of the radical of the nonreduced
cut of P}ake modulo 73. One of the equations was

F = Q3Q6 +61Q4Qs + 29Q5Q6 + 53Q% 4+ 9Q1Q7 + 18Q2Q7 + 42Q3Q7
+32Q4Q7 + 15Q5Q7 + 9Q6Q7 + 11Q% + 25Q1 Qs + 3Q3Qs + 13Q4Qs
+18Q5Qs + 21Q6Qs + 11Q7Qs + 44Q2 + 49Q1Q9 + 63Q2Q9 + 53Q3Q9
+12Q4Q9 + 26Q5Q9 + 12Q6Q9 + 51Q7Q9 + 68QsQy + 44Q3

in the variables @); of the bicanonical embedding of ]P’?c ake Modulo 73. Then
F? was in the ideal of the cut, and we wrote

84
F?=) HE+CutR (3.2)
i=1
as polynomials in Qq, ..., Q9. Here F; are the equations of IP’?C ake (cubic in

Q), H; are unknown linear combinations of @, and R is an unknown cubic
polynomial in ). We originally computed a relation modulo 73 and
then lifted it modulo 73 for increasing powers of k. At each step k — k+ 1
we had a system of linear equations modulo 73 on the corrections to the
coefficients of H;, F' and R. We used Mathematica to solve it, and picked
the initial solution which was automatically taking case of making some
coefficients zero. We went up to 733° which gave a good approximation to
coefficients of the nonreduced cut over the complex numbers.

There is a standard way of guessing an algebraic number from its p-adic
approximation. We used it to see that the nonreduced cut is given by

Qo — CTBOND (Q, 1 Q, + Q) — W IBND (), 1 ;4 )
— (O3B PAI2 Q7 + Qs + Qo)

(3.3)
where W = (3(2 — 1\/5))§ The details of the above calculation are in the
Mathematica file Stepl.nb.

3.2. Step 2. We work out Steps 2 and 3 in the Mathematica file Steps23.nb.
By simply scaling @)-s by the appropriate powers of W, we arranged the cut
of (3.3) to be defined over Q(v/—2) with equations of P?ake still defined
over this field. However, it was convenient for us to enlarge the field to
Q(v/—2,4v/—3) and to pick a basis of eigenvectors of the C3 x C5 action on
H O(IP’?c ake> 0H), with the new variables called Ry, ..., Rg. We made the cut
to be Ry + R4 + R7, made one of the fixed points of a C3 action to be
(0:1:1:1:0:0:0:0:0:0)

and made the tangent space to the cone over ]P’%ake at this point to be
generated by

(0,1,1,1,0,0,0,0,0,0),(0,0,0,0,1,1,1,0,0,0), (0,0,0,0,0,0,0,1,1,1).
These conditions fixed the basis of R;, and the resulting equations of ]P’?c ake
had very small coefficients in Z[v/—2,v/—3].
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3.3. Step 3. The torsion subgroup of the Picard group of ]P’? ake 18 isomor-
phic to Ci3 x Cy x C9, and the nontrivial two-torsion elements are acted
upon by an order 3 automorphism of IP’% ake Which scales R4, R5, R by the
primitive third root of unity w = %(—1 +1v/3) and scales Ry, Rg, Ry by w?.
Each 2-torsion element in the Picard group of IP’?C ake 8ives a nonreduced cut
of it in the bicanonical embedding, which are thus

Ry + Ry + Ry, Ry +wRy+ w?Ry, Ry + w?Ry + wRy, (3.4)
in the R; coordinates.

The field of fractions of the ring P~ HO(4.IP’?Cake, 3kH) is obtained from
that of P HO(Paake,GkH) by attaching the square roots of the linear

forms (3.4). The sections of H O(Q.P?akeﬁH ) of the double cover can be
then obtained as pullbacks of R; and as

F(R)
\/Rl +wRy + w?Ry \/Rl +w?Ry +wRy

where F'(R) are quadratic polynomials in R; with the property that they
are zero on the loci of zeros of Ry + wRy + w?Ry and Ry + w?Ry + wRy.
These have been computed and given the names Uy, ..., U9 where U; = R;
for 0 < ¢ < 9 form a basis of the subspace of invariants of the covering
involution of 2.P?ake — Pfcake, and the Ujg,...,Uig form a basis of the
(—1)-eigenspace. Adding the Cj5 translates of the latter gave us a basis
Uy, ..., Usg of H0(4.]P>?cake,6H) in terms of R; and the above square roots.
We also extend the action of C's x C3 to these U;.

Remark 3.1. We computed equations of the double cover Q.P?c akes 1-€. the
relations among Uy, ..., U9 and got the expected dimension 100 space of
these equations. We suspect that these quadratic equations cut out 2.]?? ake
in its bicanonical embedding, but we did not try ascertain that (and it also
may be beyond the reach of our hardware). We did not use these equations
later in our computations.

3.4. Step 4. Step 4 takes a lot of work, and it is done in Step4.nb.
We first recall that 8.Pfcak6 is acted upon by
Cs3 x SL(2,Z/3Z)
so that the quotient by the normal 2-Sylow subgroup Qg of SL(2,Z/37Z)
induces the automorphism action of C3 x C3 on ]P)?cake‘ By our construction
of Step 3, we have also lifted the action of C3 x C3 to act on 4.}}"?6”IC .» Which
is the quotient of 8.1@%&,% by the central involution ¢ € Q)g. Holomorphic

Lefschetz formula allows one to figure out the action of C3 x SL(2,Z/37Z)
on H0(8.P§ake,3H) and there exist, unique up to scaling, two elements s;

and sg of H0(8.]P’?ake, 3H) with the following properties.
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e Both s; are (—1)-eigenfunctions for the covering involution o of
2 2
8.P% ke = 4 PFake
e Both s; are invariant with respect to the central Cs.
e Both s; are eigenfunctions for the action of the other C3, one with
weight w and the other with weight w?.

Consequently, fo = s152, fi = 57 and f = s3 are invariant with respect to
o and are pullbacks of elements of H° (4.1["3C aker 0H) (i-e. linear combinations
of Uy, ...,Usg) that satisfy

fi=rht (3.5)

and have prescribed weights with respect to the C3 x C3 action on U;. This
resulted in a system of 26 quadratic equations on 16 unknown coefficients
of fi. After a fortunate choice of two additional scaling equations (since
s; are only up to scaling, we can scale two out of three f;), Mathemat-
ica readily solved the resulting equations in 14 variables numerically and
then recognized the results as good approximations to algebraic numbers in
Q=2 v=3).

There is a two-dimensional subspace of H O(S.P?cake,?)H ) which is anti-
invariant with respect to o and is invariant with respect to both C3 groups.
For an element v of it, we knew where v? and vs; were, which allowed us to
find it. This gave us seven linearly independent elements of H° (S.P? aker SH),
namely the square roots of (3.4, and four other of the form F;(U)/+/fi for
a solution f; of and a linear function F; of Uy,...,Usy. We denoted
this basis by Vg, ..., ;.

By Propositionsections Vo, ..., Vg of HO(S.P?ake, 3H) are all invariant
with respect to the action of the central C3 (this can also be seen by direct
examination). As a consequence, they are pullbacks of the sections of the
canonical line bundle on the singular surface S.P? ake/ C3 with 24 singularities
of type As. We found equations on V;, namely a 4-dimensional space of cubic
equations and a 58-dimensional space of quartic equations. These equations
allowed us to find points on the canonical image of 8'P?‘ake (or S.P?ake/C’g)
with high accuracy.

The next step was to lift the action of Cy x C5 on 4‘P?”ake to an action
of Qg on S.Pff ake- Specifically, this meant finding an order 4 automorphism
which lifted the order 2 automorphism of 4.[?3%,%. We also knew that its
action on the dimension four subspace spanned V3, ..., Vg was traceless, and
that the action permuted the points with V; = V5 = 0. Taken together, this
information allowed us to find the desired order 4 automorphism.

Our next goal was to understand the space HO(S.IP’?(I,CE,GH). We have
dim H0(8.]P’?cake, 6H) = 80, so it would be rather useless to try to compute
equations among these, since solving systems of nonlinear equations in 80
variables is well beyond the capabilities of our available hardware. Instead,
we had to settle for being able to compute a lot of points in the image
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S.P?cake — CP™ with high accuracy. The approach we took was to first
compute points on 8.]?? ake/ C3 where we do have equations and then compute
the values of elements H0(8.}P’?gake, 6H) on them.

We observed that Ry, Ry, R4, R7 can be easily written as degree two poly-
nomials in V;. In contrast, Ry is not invariant under the central C3 and
can therefore not be written as a rational function in V;. However, Rj
can be written as a rational function in Ry, R1, R4, R7 (namely as a ra-
tio of a degree 12 polynomial and a degree 9 polynomial), and we com-
puted it. Similarly, we computed rational functions in these variables for
RoR3, RoRg, RoRg, R%Rg,, R%Rg. Recall that U; for 0 < ¢ < 39 are written as
rational functions in R; and Vj, Vi, Va. Therefore, for given (high accuracy)
values of V;, we can find three values for Ry and then find values of the rest
of R; and Uy, ...,Usg for each of three values of R».

We then computed the subspace of H O(S.P?ake, 6H) of sections that are
anti-invariant with respect to the covering involution o. We did this by
considering rational functions in V-s and Ra, of total V-degree 2, which are
zero on the curves Vo + V1 4+ Vo = 0 and V3 = 0, divided by (Vo + Vi + V2) V3.
We first got a database of points on these two curves, and then computed
vanishing conditions. The calculation was performed in Step4.nb and is split
into three cases according to the character of the central Cs. Specifically,
for the trivial character, we looked for degree four polynomials in V; which
vanish at the aforementioned curves. For the other characters, we looked for
linear combinations of products of quadratic polynomials in V' with some
sections of H0(4.]P’?ake, 6H) with the same central weight.

Afterwards, we computed the action of the two Cs3-s (the central one
and the chosen subgroup of SL(2,Z/3Z)) on the space H0(4.P;ake, 6H) of

dimension 80. We picked an eigenbasis of it, denoted by U, ..., Uro. Finally,
we computed points on S.Pfcake with accuracy of several thousand digits, in
preparation for the next step.

3.5. Step 5. Naturally, this is the trickiest step of the whole paper, worked
out in Stepb.nb.

The map 72‘P?‘ak‘e — B.Pfcake is a Galois cover with the covering group

C3 x (3, and we have a good understanding of HO(72.P;ake, 3H) by Propo-
sition In what follows, we will denote the corresponding subspaces of
HO(T2.P%,,,.,3H) as HO(T2.P%,,..,3H )11, ..., HO(T2.P%,;.., 3H)30, according
to the index of the irreducible character. Note that each of the 8-dimensional
irreps of H 0(72.1?? aker SH )i for 23 <4 < 30 has one-dimensional eigenspaces
for all non-trivial characters of the covering group. Indeed, all nonzero ele-
ments of this group are in the conjugacy class 3a and thus have trace (—1).
We also observe that each of these representations is acted upon by the
central involution o of )g which permutes Cs x C3 eigenspaces by inverting
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eigenvalues, because it corresponds to (—Id) in SL(2,Z/37Z). The following
proposition is the key to our approach.

Proposition 3.2. Consider an order 3 element h of SL(2,Z/3Z) and its
action on the 3-torsion subgroup Cs x C3 of Pic(8.IP’?cake). Suppose that the
character (w, 1) of the covering C3 x C3 corresponds to the eigenvector of
hin C3 x C3. Let f; and fo = o(f1) be a (w, 1)-eigenvector and a (w?, 1)-
eigenvector for the covering C3 x Cs in the space H0(72.P?cake, 3H )a9, respec-
tively. Likewise, let g1 and g2 = o(g1) be an (w,1)- and (w?, 1)-eigenvectors
in the space H0(72'P?‘ake73H)30' Then s1 = fifa, s2 = f192, s3 = g1fo,
sS4 = g1go are invariant under the covering group and can be thought of as
elements of H 0(8.1[”% ake> 0H). These sections s; have the following properties.
® S1S4 = S9S83
[ 0'(82) = 83
e Sections s1,s2, 53,54 have weights (w,1,1,w?) respectively for the
central ('3 action on HO(S.IP’fcake, 6H).
e The weights of s1,s9, 83,54 for the action of h € SL(2,Z/3Z) are
(w2, w*b wat? 1w?*) for some a and b in Z/37Z.

Proof. The first two statements are immediate from the construction. To
prove the third statement, observe that the generator of the central Cs3 has
trace Sw? in ya29 and 8w in 3¢ (after an appropriate choice of generator or a
switch of y29 and x30). Thus f; have eigenvalues w? and g; have eigenvalues
w.

The last statement is the most delicate. Since h preserves the corre-
sponding element of the Picard group, its action preserves the corresponding
eigenspaces of HO(72.P?ake,3H)29 and HO(72.IP§Q,€E,3H)30. Thus f; and g;
are eigenvectors for its action, with eigenvalues w® and w® for some a and

b. O

Remark 3.3. There is nothing particularly special about using x99 and
X30 in Proposition 3.2} In fact, 29 can be replaced by 25 or 27 and 30 can
be replaced by 26 or 28. Since we do not know which values of a and b
correspond to which subrepresentations, as we get a solution (si,...,s4) we
will not know exactly which subrepresentations they come from.

For each pair of values (a,b), the conditions of Proposition can be
translated into a system of polynomial equations on the coefficients of s; in
the bases of the corresponding subspaces of H 0(8.}?? ake> 0H). The number
of variables is generally under 20, and we were able to solve one the systems.
Specifically, we solved it modulo 4363, which is a large prime for which both
(—2) and (—3) are quadratic residues, then lifted the solution to powers of
4363 and finally used this p-adic approximation of solutions to realize them
as algebraic numbers.

Getting an equation of the form sys4 = sos3 is indicative of some ad-
ditional divisor classes, given by (s1,s3) and (si,s4). We computed the
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corresponding divisors and found that a third power can be written as a
section of H O(S.P?ake, 9H). Specifically, we were able to write it as a degree
3 polynomial (called goodrr in the Mathematica file Step5.nb) in Vg, ..., Vs,
since a third power is also invariant with respect to the central C5. In view
of Remark we do not know precisely which irreducible subrepresenta-
tion the corresponding section f; € H 0(72.Pfcak ., 3H) lies in, but it is not
important to us. Indeed, we know from Proposition that unramified
triple covers of 8.]??@ ake COme from 72.IP’3¢ akes and we know that by adding fi,
and its QJg-translates to the function field of the cone over S.P%ake, we will

get the function field of the cone over 72.]P’?c ake-

More precisely, we computed a basis of a dimension 8 subspace of elements
of H° (S.P?ake, 6H) which vanish on f; = 0 and were thus able to describe a
set of 8 linearly independent sections in H 0(72.1?? wier 3H) as R/ f1 for R in
this subspace. Then Qg translates of these forms, together with (pullbacks
of) V; € H%&P?ake, 3H) gave the basis of H%?Z.P?ake, 3H). To be able to
really compute values of elements of H 0(72.1[”?0 ake» SH) on points of 72.]P’3£ ake
we needed to be careful in identifying values of Qg-translates f; of fi. While
we knew their cubes, it was not clear which cubic roots had to be taken. This
issue was solved by computing products f; f; fi, which lie in H 0(8.}?? aker 9H)
and using the values of the products to pick correct values of all but two f;
(first two f; can be taking arbitrarily, each choice giving one of the preimage
points of C3 x C3 cover 72.P?ake — S.Piake).

et

In order to construct the surfaces 9.P?cak . and P?ak . we found a lift
of the action of C3 x SL(2,Z/3Z) from 8.]P’3fake to 72.[?’3(&,% by picking
lifts of the generators. We then averaged over (Jg to get values of sec-

tions of H O(Q.Pfcake,SH ), called Wy,...Ws. We similarly averaged over

C3 x SL(2,Z/3Z) to get a basis of HO(]P’?@ake,GH), called Zy,...,Zy. We
computed equations on Z;, which were dim 84 space of cubics in Z;, with
coefficients in Q(v/—2,+/=3). In fact, we had to assume that the equations
would lie in this field and still had to use several thousand digits of accuracy
in our computation of points. Wia\lso computed the values of four pairwise

products of W; which lie in H O(IF’} ake» 0 ) which gave natural reducible lin-

ear cuts of ]P’?c ake 1N its bicanonical embedding. These were used in the next
step.

3.6. Step 6. At this point we had putative equations of P?ake but the co-

efficients were large and were defined over Q(v/—2,v/—3). Both of these
features made working with this surface difficult. We followed a rather ad
hoc process which somewhat surprisingly allowed us to take care of both
issues.
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First or all, for each pair of reducible cuts, found in Step 5, we computed

—

their 36 intersection points on ]P’?ake. We speculated that Z; had to be

—

defined over Q(y/—2), in the sense that there is a model of IP’? ake OVer this
field where Zj is defined over it. We normalized the 36 points of intersections
to have Zy = 1. Then we separated these 36 points according to their
field of definition. We added these points to get linear combinations of the
basis dual to Z; with coefficients in the field Q(v/—2,1/—3). As the pairs
varied, we ended up picking 21 such points. We also speculated that Z;
should be defined over Q(y/—2) and used natural linear combinations of
the above 21 points to get 13 natural points in C'°. We then picked 10
linearly independent ones and used a linear change of variables so that new
sections were a dual basis. The resulting equations were indeed defined over
Q(v/—2), but the coefficients were up to 8 x 103 digits long. The process
was further refined by picking a small Q(y/—2)-linear combination of the
above 10 points defined over Q(v/—2,1/—3). That led to equations in the
new variables Yy, ...Yy which were in Q(v/—2) and had coefficients a few
hundred digits long. Finally, we traded the number of nonzero terms for
the size of the coefficients by picking linear combinations of the equations
via a lattice reduction algorithm. This led to the final output where the
equations were only 20 to 30 decimal digits long, in Z[v/—2]. It seems
plausible that one can reduce the coefficients further by picking a better

basis of HO(P?@ake, 6H), but we were unable to do so.

The details are in the file Step6.nb.

3.7. Step 7. The techniques of the previous steps used probabilistic ap-
proaches and approximate calculations, and the overall complexity of the
code was also formidable. Fortunately, it is possible to verify that the
surface we obtained is a fake projective plane by doing exact and rela-
tively short calculations in Magma. We can then confidently identify it
as (C18,p = 3,{2I}). The method of verification that the surface is an
FPP has not changed much since [4]. Specifically, we first observed that the
surface S in question has the correct Hilbert polynomial. Then we showed
that it is smooth by picking three random minors of the Jacobian matrix
and checking that adding them to the equations gives zero Hilbert polyno-
mial over a finite field. For better or for worse, we used the same minors as
in [8], and it worked. We also computed the dimension of the cohomology
spaces of the structure sheaf and the first cohomology space of the cotan-
gent bundle. This allowed us to conclude that the surface is an FPP. Then
it suffices to compute, as in [7], that h?(X,2Kx(—1)) = 0 to show that our
embedding is precisely the bicanonical one. As a slight improvement over
previous approaches, we did the calculations entirely in Magma, as opposed
to a mix of Magma and Macaulay2. The details are in Step7Magma (Hilbert

polynomial of IP’?C ake Over the number field) and Step7Magmad363 (the rest).
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