// Generators and relations of the group is from https://www.maths.usyd.edu.au/u/donaldc/fakeprojectiveplanes/bargammapresentations.txt print "\nFor the class (a=7,p=2,\emptyset)"; print "********************************"; // The group $\bar\Gamma$: F:=FreeGroup(2); relnlist:={ xz^7, (xb^-2*xz^1)^3, (xb^2*xz^-2*xb^2*xz^2)^3, (xb^2*xz^-2*xb^2*xz^4)^3, xb^3*xz^-2*xb^-1*xz^2*xb^-2*xz^1, xb^3*xz^1*xb^3*xz^3*xb*xz^2*xb^-1*xz^-1, xb^3*xz^2*xb^2*xz^-2*xb^-1*xz^-1*xb^-3*xz^1*xb^-1*xz^-1}; G,psi:=quo; z:=psi(xz); b:=psi(xb); print "\nFor the fpp (a=7,p=2,\emptyset,D_3 2_7)"; print "**************************************"; // generators of the fundamental group: s1:=b^3; s2:=(z*b*z^-1)^3; s3:=b*z*b^2*z^-2; s4:=z*b*z^3*b^-1; // Here is the fundamental group: GY:=sub< G | s1,s2,s3,s4>; print "Index of GY in G is",Index(G,GY); print "AbelianQuotientInvariants(GY) =",AbelianQuotientInvariants(GY); print "\nFor the fpp (a=7,p=2,\emptyset,D_3 X_7)"; print "**************************************"; // generators of the fundamental group s5:=b^3; s6:=z*b^3*z; s7:=b*z^2*b^-1*z; // Here is the fundamental group: GX:=sub< G | s5,s6,s7>; print "Index of GX in G is",Index(G,GX); print "AbelianQuotientInvariants(GX) =",AbelianQuotientInvariants(GX); // Defining GZ: GZ:=CommutatorSubgroup(GX); // The next command also verifies that GZ is a subgroup of GY Index(GY,GZ); // Checking that GZ is a normal subgroup of G IsNormal(G,GZ); H:=G/GZ; #(H); t1:=b^3; t2:=b*z*b^2*z^(-2)*b^3; t3:=b*z^2*b^(-1)*z; t4:=b^4; // We see that the following four elements generate the quotient subgroup and satisfy // the relations of the semidirect product Index(G,sub); // output = 1 Index(sub,GZ); // output = 1 Index(sub,GZ); //output = 1 // We verify that t1 and t2 generate GY/GZ and t1 and t3 generate GX/GZ Index(sub, GY); Index(sub, GX); // Checking finiteness of abelianization Index(GZ,CommutatorSubgroup(GZ));