We will be using Chuck Weibel's book
"Introduction to homological algebra". The syllabus will develop as we go
along.
Lecture 1. Sep. 4, 1.1
Complexes of R-modules. Exercises: 1.1.1, 1.1.2, 1.1.4, 1.1.5
Lecture 2. Sep. 8, 1.2
Abelian categories. Operations on chain complexes.
Exercises: 1.2.1, 1.2.2, 1.2.5, 1.2.6, 1.2.8
Lecture 3. Sep. 11, 1.3.
Long exact sequences.
Exercises: Prove the Snake Lemma, 1.3.3, 1.3.4, 1.3.5.
Lecture 4. Sep. 15.
Solving exercises from the book.
Lecture 5. Sep. 18, 1.4.
Chain homotopies.
Exercises: 1.4.2, 1.4.4, 1.4.5
Lecture 6. Sep. 22, 2.1.
Delta functors.
Lecture 7. Sep. 25, 2.2
Projective resolutions.
Exercises: 2.2.1, 2.2.2
Lecture 8. Sep. 29, 2.2-continued, 2.3
Exercises: 2.2.4, 2.3.1, 2.3.2
Lecture 9. Oct. 2, 2.3-continued, 2.4
Lecture 10. Oct. 6, 2.4-continued
Lecture 11. Oct. 9, 2.4-continued, 2.5
Lecture 12. Oct. 13, 2.7
Lecture 13. Oct. 16, 2.7-continued, 3.1
Lecture 14. Oct. 20, Hilbert Syzygy Theorem
Lecture 15. Oct. 23, Hilbert Syzygy Theorem-continued, 3.4
Lecture 16. Oct. 27, 3.4-continued
Lecture 17. Oct. 30, 3.6
Lecture 18. Nov. 3, Spectral sequences of filtered complexes (from G-H book)
Lecture 19. Nov. 6, 5.1, 5.2
Lecture 20. Nov. 10, 5.2-continued
Lecture 21. Nov. 13, 5.5
Lecture 22. Nov. 17, 5.6
Lecture 23. Nov. 20, 5.7
Lecture 24. Nov. 24, 5.8
Lecture 25. Nov. 25 (Tuesday!), 10.1
Lecture 26. Dec. 1, 10.2
Lecture 27. Dec. 5, 10.3
Lecture 28. Dec. 8, 10.4