Math 555, Fall 2021. Moduli of curves. Approximate syllabus, to be modified as we go along.

- 1. Brief review of complex algebraic curves and Riemann surfaces.
 - \mathbb{C}^1 and \mathbb{CP}^1 as schemes and as complex manifolds.
 - Elliptic curves.
 - Hyperelliptic curves.
 - Planar curves
- 2. Line bundles and divisors on curves.
 - Complex-analytic setup and motivation.
 - Scheme-theoretic setup.
 - $\mathcal{O}(D)$.
 - Picard group.
 - Regular and rational sections of line bundles.
 - Analogy with number fields.
- 3. Riemann-Roch theorem on curves.
 - Reminder of homology and cohomology.
 - Canonical class.
 - Serre duality.
 - Hurwitz formula.
- 4. Uniformization, Kodaira dimension, automorphisms.
 - Genus zero.
 - Genus one.
 - Higher genera.
 - Automorphisms of complex algebraic curves.
 - Rough argument for the dimension of the moduli space of curves.
- 5. Moduli of elliptic curves.
 - Complex analytic description.
 - Algebraic description, a sniff of DM stacks.
 - Level structures and modular curves.
 - Monstrous Moonshine.
 - (Maybe) Hecke correspondences.
- 6. Moduli of curves of genus 2.
 - Curves of genus 2 and their Jacobians.
 - Rough parametrization.
 - Igusa quartic.

- Siegel upper half space and Siegel modular forms.
- Various parameterizations.
- 7. Construction of $M_{g,n}$.
 - Tricanonical embedding.
 - Hilbert scheme.
 - GIT quotient.
 - Compactifications.
- 8. Deligne-Mumford stacks.
 - Motivation.
 - Category of schemes.
 - General stacks.
 - Example: finite group quotients.
 - Example: BG
 - Stack structure on $M_{g,n}$.
- **9.** $M_{0,n}$

10. Kodaira dimension of $M_{g,n}$.

11. Noether-Lefschetz theory.

- 12. VOAs and Riemann surfaces.
- **13.** Kontsevich's theorem on Airy functon.
- 14. Gromov-Witten invariants.

2