

Recap and Homework 2/24/2020

We covered associated primes and primary decomposition. All the rings and modules are assumed to be Noetherian.

Theorem. The set of nilpotent elements on M (which is by definition the radical $\sqrt{\text{Ann}(M)}$ of the annihilator of M) is

$$\bigcap_{p \in \text{Ass}(M)} p.$$

Proof. Finished in class.

Definition. A module M over R is called co-primary if $\text{Ass}(M)$ consists of a single element. It is equivalent to the statement that every zero divisor on M is nilpotent on M .

Definition. An ideal I of R is called primary iff R/I is co-primary. This is equivalent to the following statement.

If $ab \in I$ and $b \notin I$, then $a^n \in I$ for some n .

More generally, we call a submodule N of M primary if M/N is co-primary.

The main result of the class was the following.

Theorem. For every Noetherian module M there exist primary submodules M_1, \dots, M_n such that

$$0 = \bigcap_{i=1}^n M_i.$$

Proof. In class. The main idea was to consider submodules of M that can not be written as intersections of two strictly larger submodules. Noetherian property of M shows that 0 can be written as an intersection of such ideals. Then we can show that each of these ideals is primary.

Theorem. Let p be an associated prime of M . If $0 = \bigcap_{i=1}^n M_i$ with primary M_i , then one of the M/M_i has p as its (unique) associated prime.

Proof. In class. Main idea: the natural map $M \rightarrow \bigoplus_i M/M_i$ is injective.

Future plans. Next time we will argue that one can find a primary decomposition that involves exactly one M_i for each associated prime of M . We will also discuss uniqueness of lack thereof of such M_i .

Homework. All modules and rings are assumed Noetherian.

1. Let M_1 and M_2 be two primary submodules of a module M , with

$$\text{Ass}(M/M_1) = \text{Ass}(M/M_2) = \{p\}.$$

Prove that $M_1 \cap M_2$ is primary with $\text{Ass}(M/M_1 \cap M_2) = \{p\}$.

2. Let I be a primary ideal of R and p the corresponding associated prime. Prove that $p \supseteq I \supseteq p^n$ for some n .

3. Prove that if m is a maximum ideal of R and an ideal I satisfies $m \supseteq I \supseteq m^n$ for some n , then I is primary. **The statement fails if one only assumes that m is prime. In fact, powers of prime ideals are not always primary!**

4. Let $R = \mathbb{Z}$ and let $M = \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}$.

- (a) Prove that $\text{Ass}(M) = \{2\mathbb{Z}, 3\mathbb{Z}, \{0\}\}$ (easy).
- (b) Find a primary decomposition of M in the form $0 = M_1 \cap M_2 \cap M_3$ with M/M_i having the above three associated primes, in this order.
- (c) Give another example with different (as submodules) M_1 and M_2 .