Difficulty guide for worksheet:

C-level or B-level exam problem: 1, 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i
A-level exam problem or challenge for extra study:
2j, 2k, 3
beyond the scope and/or removed from syllabus:
none

1. Identify which of the following expressions makes sense and for those that do, say whether it is a vector or a scalar. Assume f and g are sufficiently differentiable scalar-valued functions, and assume \boldsymbol{F} and \boldsymbol{G} are sufficiently differentiable vector fields. The vectors $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} are constants.
(a) $(\boldsymbol{a} \cdot \boldsymbol{b}) \times \boldsymbol{c}$
(f) $\operatorname{curl}(\boldsymbol{F} \times \boldsymbol{G})$
(k) $\operatorname{div}(f \boldsymbol{F})$
(b) $\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})$
(g) $\boldsymbol{F} \times \operatorname{grad}(f)$
(l) $\operatorname{div}(\boldsymbol{F G})$
(c) $\operatorname{grad}(\boldsymbol{F})$
(h) $\operatorname{curl}(f \boldsymbol{F})$
(m) $\operatorname{curl}(\operatorname{div}(\boldsymbol{F}))$
(d) $\boldsymbol{F} \cdot \operatorname{grad}(f)$
(i) $\operatorname{grad}(f g)$
(n) $\operatorname{grad}(\operatorname{div}(\boldsymbol{F}))$
(e) $\operatorname{div}(\boldsymbol{F} \cdot \boldsymbol{G})$
(j) $\operatorname{curl}(\boldsymbol{F} \cdot \boldsymbol{G})$
(o) $\operatorname{curl}(\operatorname{curl}(\boldsymbol{F}))$
2. Calculate $\operatorname{curl}(\boldsymbol{F})$ and $\operatorname{div}(\boldsymbol{F})$ for each vector field \boldsymbol{F}. Also, for each \boldsymbol{F}, find a potential function f or show that no such potential exists.
(a) $\boldsymbol{F}=\langle x, y\rangle$
(g) $\boldsymbol{F}=\left\langle x^{3}, 3 y,-z^{3}\right\rangle$
(b) $\boldsymbol{F}=\langle y, x, x-y\rangle$
(h) $\boldsymbol{F}=\left\langle y e^{x y}, x e^{x y}\right\rangle$
(c) $\boldsymbol{F}=\langle y+z, x+z, x+y\rangle$
(i) $\boldsymbol{F}=\left\langle y z^{2}, x z^{2}, 2 x y z\right\rangle$
(d) $\boldsymbol{F}=\langle-y,-x\rangle$
(j) $\boldsymbol{F}=\frac{\langle x, y, z\rangle}{x^{2}+y^{2}+z^{2}}$
(e) $\boldsymbol{F}=\langle-y, x\rangle$
(f) $\boldsymbol{F}=\left\langle e^{z}, e^{z}, e^{z}(x-y)\right\rangle$
(k) $\boldsymbol{F}=\frac{\langle x, y, z\rangle}{\sqrt{x^{2}+y^{2}+z^{2}}}$
3. Determine whether the following statements are true or false. If the statement is true, explain why. If the statement is false, give a counterexample.
Recall: It is well known that for a function f of a single variable, if $f^{\prime}(x)=0$ for all x, then f is a constant function.
(a) If $\boldsymbol{\nabla} \cdot \boldsymbol{F}=0$ for all points (x, y, z), then \boldsymbol{F} is constant.
(b) If $\boldsymbol{\nabla} \times \boldsymbol{F}=\mathbf{0}$ for all points (x, y, z), then \boldsymbol{F} is constant.
(c) If $\boldsymbol{\nabla} \cdot \boldsymbol{F}=0$ and $\boldsymbol{\nabla} \times \boldsymbol{F}=\mathbf{0}$ for all points (x, y, z), then \boldsymbol{F} is constant.
(d) A vector field consisting of parallel vectors has zero curl.
(e) A vector field consisting of parallel vectors has zero divergence.
(f) $\boldsymbol{\nabla} \times \boldsymbol{F}$ is orthogonal to \boldsymbol{F}.
