Calculus 251:C3 Worksheet 16.8

(1) Verify the Divergence Theorem for the given vector field and region.

(a)
$$\vec{F}(x, y, z) = \langle z, x, y \rangle$$
, the box $[0, 4] \times [0, 2] \times [0, 3]$.

- (b) $\vec{F}(x, y, z) = \langle y, x, z \rangle$, the region $x^2 + y^2 + z^2 \le 4$.
- (c) $\vec{F}(x,y,z) = \langle 2x, 3z, 3y \rangle$, the region $x^2 + y^2 \le 1, 0 \le z \le 2$.

(2) Use the Divergence Theorem to evaluate the flux $\iint_{\mathcal{S}} \vec{F} \cdot d\vec{S}$.

- (a) $\vec{F}(x, y, z) = \langle xy^2, yz^2, zx^2 \rangle$ \mathcal{S} is the boundary of the cylinder $x^2 + y^2 \le 4, 0 \le z \le 3$
- (b) $\vec{F}(x, y, z) = \langle x^3, 0, z^3 \rangle$ \mathcal{S} is the boundary of the region $x^2 + y^2 + z^2 \le 4, x, y, z \ge 0$
- (c) $\vec{F}(x, y, z) = \langle x, y^2, z + y \rangle$ S is the boundary of the region contained in the cylinder $x^2 + y^2 = 4$ between the planes z = x and z = 8
- (d) $\vec{F}(x, y, z) = \langle x^2 z^2, e^{z^2} \cos x, y^3 \rangle$ S is the boundary of the region bounded by x + 2y + 4z = 12 and the coordinate planes in the first octant
- (e) $\vec{F}(x, y, z) = \langle x + y, z, z x \rangle$ \mathcal{S} is the boundary of the region between the paraboloid $z = 9 - x^2 - y^2$ and the *xy*-plane