Calculus 251:C3 Worksheet 16.8

(1) Verify the Divergence Theorem for the given vector field and region.
(a) $\vec{F}(x, y, z)=\langle z, x, y\rangle$, the box $[0,4] \times[0,2] \times[0,3]$.
(b) $\vec{F}(x, y, z)=\langle y, x, z\rangle$, the region $x^{2}+y^{2}+z^{2} \leq 4$.
(c) $\vec{F}(x, y, z)=\langle 2 x, 3 z, 3 y\rangle$, the region $x^{2}+y^{2} \leq 1,0 \leq z \leq 2$.
(2) Use the Divergence Theorem to evaluate the flux $\iint_{\mathcal{S}} \vec{F} \cdot d \vec{S}$.
(a) $\vec{F}(x, y, z)=\left\langle x y^{2}, y z^{2}, z x^{2}\right\rangle$
\mathcal{S} is the boundary of the cylinder $x^{2}+y^{2} \leq 4,0 \leq z \leq 3$
(b) $\vec{F}(x, y, z)=\left\langle x^{3}, 0, z^{3}\right\rangle$
\mathcal{S} is the boundary of the region $x^{2}+y^{2}+z^{2} \leq 4, x, y, z \geq 0$
(c) $\vec{F}(x, y, z)=\left\langle x, y^{2}, z+y\right\rangle$
\mathcal{S} is the boundary of the region contained in the cylinder $x^{2}+y^{2}=4$ between the planes $z=x$ and $z=8$
(d) $\vec{F}(x, y, z)=\left\langle x^{2}-z^{2}, e^{z^{2}}-\cos x, y^{3}\right\rangle$
\mathcal{S} is the boundary of the region bounded by $x+2 y+4 z=12$ and the coordinate planes in the first octant
(e) $\vec{F}(x, y, z)=\langle x+y, z, z-x\rangle$
\mathcal{S} is the boundary of the region between the paraboloid $z=9-x^{2}-y^{2}$ and the $x y$-plane

