Calculus 251:C3 Worksheet 16.7

(1) Verify Stokes' Theorem for the given vector field and surface, orienting the surface with upward-pointing normal.
(a) $\vec{F}=\langle 2 x y, x, y+z\rangle$, the surface $z=1-x^{2}-y^{2}$ for $x^{2}+y^{2} \leq 1$.
(b) $\vec{F}=\left\langle y, x, x^{2}+y^{2}\right\rangle$, the surface $x^{2}+y^{2}+z^{2}=1$ for $z \geq 0$.
(2) Caculate $\operatorname{curl}(\vec{F})$ and then apply Stokes' Theorem to compute the flux of $\operatorname{curl}(\vec{F})$ through the given surface using a line integral.
(a) $\vec{F}=\left\langle e^{z^{2}}-y, e^{z^{3}}+x, \cos (x z)\right\rangle$, the surface $x^{2}+y^{2}+z^{2}=1$ for $z \geq 0$ with outward-pointing normal.
(b) $\vec{F}=\langle 3 z, 5 x,-2 y\rangle$, the surface $z=x^{2}+y^{2}$ for $z \leq 4$ with upward-pointing normal.
(c) $\vec{F}=\langle y z, x z, x y\rangle$, the surface $x^{2}+y^{2}=1$ for $1 \leq z \leq 4$ with outward-pointing normal.
(3) Use Stokes' Theorem to evaluate $\oint_{\mathcal{C}} \vec{F} \cdot d \vec{r}$ by finding the flux of $\operatorname{curl}(\vec{F})$ across an appropriate surface.
(a) $\vec{F}=\langle 3 y,-2 x, 3 y\rangle, \mathcal{C}$ is the circle $x^{2}+y^{2}=9, z=2$ oriented counterclockwise as viewed from above.
(b) $\vec{F}=\langle x z, x y, y z\rangle, \mathcal{C}$ is the rectangle with vertices $(0,0,0),(0,0,2),(3,0,2),(3,0,0)$ oriented counterclockwise as viewed from the positive y-axis.
(c) $\vec{F}=\langle y, z, x\rangle, \mathcal{C}$ is the rectangle with vertices $(0,0,0),(3,0,0),(0,3,3)$ oriented counterclockwise as viewed from above.
(4) Let $\vec{F}=\left\langle y^{2}, 2 z+x, 2 y^{2}\right\rangle$. Use Stokes' Theorem to find a plane with equation $a x+$ $b y+c z=0$ (where a, b, c are not all zero) such that $\oint_{\mathcal{C}} \vec{F} \cdot d \vec{r}=0$ for every closed \mathcal{C} lying in the plane.
(5) Let $\vec{F}=\left\langle y^{2}, x^{2}, z^{2}\right\rangle$. Show that for any two closed curves $\mathcal{C}_{1}, \mathcal{C}_{2}$ going exactly once around a cylinder whose central axis is the z-axis, $\oint_{\mathcal{C}_{1}} \vec{F} \cdot d \vec{r}=\oint_{\mathcal{C}_{2}} \vec{F} \cdot d \vec{r}$
(6) Let I be the flux of $\vec{F}=\left\langle e^{y}, 2 x e^{x^{2}}, z^{2}\right\rangle$ through the upper hemisphere \mathcal{S} of the unit sphere.
(a) Let $\vec{G}=\left\langle e^{y}, 2 x e^{x^{2}}, 0\right\rangle$. Find a vector field \vec{A} such that $\vec{\nabla} \times \vec{A}=\vec{G}$.
(b) Use Stokes' Theorem to show that the flux of \vec{G} through \mathcal{S} is 0. (Hint: Calculate the circulation of \vec{A} around $\partial \mathcal{S}$.)
(c) Calculate I. (Hint: Use (b) to show that I is the flux of $\left\langle 0,0, z^{2}\right\rangle$ through \mathcal{S}.)

