Calculus 251:C3 Worksheet 16.6

- (1) Let \mathcal{S} be the triangle with vertices (0, 0, 3), (1, 0, 2), and (0, 4, 1).
 - (a) Find a parametrization for \mathcal{S} .

(b) Calculate
$$\iint_{\mathcal{S}} (xy + e^z) dS$$

- (2) Let S be the portion of the graph of $z = x + y^2$ above the triangle in the *xy*-plane with vertices (0, 0, 0), (1, 1, 0), and (0, 1, 0). Calculate $\iint_{S} (z x) dS$
- (3) For each vector field \vec{F} and oriented surface S, calculate the flux integral $\iint_{S} \vec{F} \cdot d\vec{S}$
 - (a) $\vec{F} = \langle e^z, z, x \rangle$; \mathcal{S} is parametrized by G(u, v) = (uv, u + v, u) on the domain $[0, 1] \times [0, 1]$
 - (b) $\vec{F} = \langle x, x, y \rangle$; S is the triangle with vertices (1, 0, 0), (0, 2, 0), and (0, 0, 3) and oriented upward.
 - (c) $\vec{F} = \langle z^2, x, -3z \rangle$; S is the portion of the graph of $z = 4 y^2$ cut by the planes x = 0, x = 1, and z = 0, and oriented by a normal vector pointing away from the *x*-axis
 - (d) $\vec{F} = \langle -x, -y, z^2 \rangle$; S is the portion of the cone $z = \sqrt{x^2 + y^2}$ between the planes z = 1 and z = 2, and oriented by a normal vector pointing away from the z-axis
 - (e) $\vec{F} = \langle xy, yz, 1 \rangle$; S is the upper cap of the sphere $x^2 + y^2 + z^2 = 25$ cut by the plane z = 3, and oriented inward
 - (f) $\vec{F} = \langle 2xy, 2yz, 2xz \rangle$; \mathcal{S} is the boundary of the cube $[0, a] \times [0, b] \times [0, c]$ with a, b, c > 0, and oriented outward
 - (g) $\vec{F} = \langle 4x, 4y, 2 \rangle$; S is the bottom portion of the paraboloid $z = x^2 + y^2$ cut by the plane z = 3, and oriented downward