Calculus 251:C3 Worksheet 16.6

(1) Let \mathcal{S} be the triangle with vertices $(0,0,3),(1,0,2)$, and $(0,4,1)$.
(a) Find a parametrization for \mathcal{S}.
(b) Calculate $\iint_{\mathcal{S}}\left(x y+e^{z}\right) d S$
(2) Let \mathcal{S} be the portion of the graph of $z=x+y^{2}$ above the triangle in the $x y$-plane with vertices $(0,0,0),(1,1,0)$, and $(0,1,0)$. Calculate $\iint_{\mathcal{S}}(z-x) d S$
(3) For each vector field \vec{F} and oriented surface \mathcal{S}, calculate the flux integral $\iint_{\mathcal{S}} \vec{F} \cdot d \vec{S}$
(a) $\vec{F}=\left\langle e^{z}, z, x\right\rangle ; \mathcal{S}$ is parametrized by $G(u, v)=(u v, u+v, u)$ on the domain $[0,1] \times[0,1]$
(b) $\vec{F}=\langle x, x, y\rangle ; \mathcal{S}$ is the triangle with vertices $(1,0,0),(0,2,0)$, and $(0,0,3)$ and oriented upward.
(c) $\vec{F}=\left\langle z^{2}, x,-3 z\right\rangle ; \mathcal{S}$ is the portion of the graph of $z=4-y^{2}$ cut by the planes $x=0, x=1$, and $z=0$, and oriented by a normal vector pointing away from the x-axis
(d) $\vec{F}=\left\langle-x,-y, z^{2}\right\rangle ; \mathcal{S}$ is the portion of the cone $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=2$, and oriented by a normal vector pointing away from the z-axis
(e) $\vec{F}=\langle x y, y z, 1\rangle ; \mathcal{S}$ is the upper cap of the sphere $x^{2}+y^{2}+z^{2}=25$ cut by the plane $z=3$, and oriented inward
(f) $\vec{F}=\langle 2 x y, 2 y z, 2 x z\rangle ; \mathcal{S}$ is the boundary of the cube $[0, a] \times[0, b] \times[0, c]$ with $a, b, c>0$, and oriented outward
(g) $\vec{F}=\langle 4 x, 4 y, 2\rangle ; \mathcal{S}$ is the bottom portion of the paraboloid $z=x^{2}+y^{2}$ cut by the plane $z=3$, and oriented downward

