Calculus 251:C3 Worksheet 16.5

- (1) Let S be the surface with parametrization $G(u,v) = (u^2 v^2, u + v, u v)$. Find an equation of the plane tangent to S at the point where u = 2 and v = 3.
- (2) Let S be the sphere centered at the origin with radius 3. Find an equation of the plane tangent to S at the point (x, y, z) = (1, -2, 2).
- (3) Calculate the area of the portion of the plane y+2z=2 inside the cylinder $x^2+y^2=1$.
- (4) Calculate the area of the lower portion cut from the sphere $x^2 + y^2 + z^2 = 2$ by the cone $z = \sqrt{x^2 + y^2}$.
- (5) A surface is parametrized by G(x, y) = (x, y, xy). Let \mathcal{S} be the part of the surface with parameter domain $\mathcal{D} = \{(x, y) : x^2 + y^2 \le 1, x \ge 0, y \ge 0\}$.
 - (a) Calculate \vec{T}_x , \vec{T}_y , and $\vec{N}(x,y)$.
 - (b) Calculate the surface area of S.
 - (c) Technically a problem for §16.6: calculate the average z-coordinate of S.
- (6) Let S be the surface that consists of the portion of the sphere $x^2 + y^2 + z^2 = 9$ in the first octant that is also both outside the cylinder $x^2 + y^2 = 1$ and above the plane $z = \sqrt{5}$.
 - (a) Find a parametrization for S.
 - (b) Calculate the normal vector \vec{N} . Does this normal vector point inward or outward?