Calculus 251:C3 Worksheet 16.5

(1) Let \mathcal{S} be the surface with parametrization $G(u, v)=\left(u^{2}-v^{2}, u+v, u-v\right)$. Find an equation of the plane tangent to \mathcal{S} at the point where $u=2$ and $v=3$.
(2) Let \mathcal{S} be the sphere centered at the origin with radius 3 . Find an equation of the plane tangent to \mathcal{S} at the point $(x, y, z)=(1,-2,2)$.
(3) Calculate the area of the portion of the plane $y+2 z=2$ inside the cylinder $x^{2}+y^{2}=1$.
(4) Calculate the area of the lower portion cut from the sphere $x^{2}+y^{2}+z^{2}=2$ by the cone $z=\sqrt{x^{2}+y^{2}}$.
(5) A surface is parametrized by $G(x, y)=(x, y, x y)$. Let \mathcal{S} be the part of the surface with parameter domain $\mathcal{D}=\left\{(x, y): x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0\right\}$.
(a) Calculate \vec{T}_{x}, \vec{T}_{y}, and $\vec{N}(x, y)$.
(b) Calculate the surface area of \mathcal{S}.
(c) Technically a problem for $\S 16.6$: calculate the average z-coordinate of \mathcal{S}.
(6) Let \mathcal{S} be the surface that consists of the portion of the sphere $x^{2}+y^{2}+z^{2}=9$ in the first octant that is also both outside the cylinder $x^{2}+y^{2}=1$ and above the plane $z=\sqrt{5}$.
(a) Find a parametrization for \mathcal{S}.
(b) Calculate the normal vector \vec{N}. Does this normal vector point inward or outward?

