Calculus 251:C3 Worksheet 16.1

(1) For each part, calculate $\int_{\mathcal{C}} f d s$ for the given function f and curve \mathcal{C}.
(a) $f(x, y)=x y$
\mathcal{C} is the unit circle
(b) $f(x, y)=x^{2}-2 y^{2}$
\mathcal{C} is the line segment from the origin to the point $(\sqrt{8}, \sqrt{8})$
(c) $f(x, y)=x$
\mathcal{C} is the curve $\vec{r}(t)=\left\langle t^{3}, 4 t\right\rangle$, for $0 \leq t \leq 1$
(d) $f(x, y, z)=y-z$
\mathcal{C} is one turn of the helix $\vec{r}(t)=\langle 3 \cos (t), 3 \sin (t), 4 t\rangle$ starting from $(3,0,0)$
(e) $f(x, y, z)=x z$
\mathcal{C} is the line segment from the origin to $(7,9,10)$
(f) $f(x, y, z)=x z$
\mathcal{C} is the line segment from the origin to $(3,2,6)$ followed by the line segment from $(3,2,6)$ to $(7,9,10)$
(g) $f(x, y, z)=x z$
\mathcal{C} is the line segment from the origin to $(7,0,0)$ followed by the line segment from $(7,0,0)$ to $(7,9,10)$
(h) $f(x, y, z)=x z$
\mathcal{C} is the line segment from the origin to $(7,0,10)$ followed by the line segment from $(7,0,10)$ to $(7,9,10)$
(2) Let \mathcal{C} be the curve $y=x^{4 / 3}$ in the $x y$-plane from $(1,1)$ to $(8,16)$. Let \mathcal{R} be the sheet that consists of all points below the surface $z=x / y$ and above the curve \mathcal{C}. Calculate the area of \mathcal{R}
(3) Find the mass of a wire that lies along the curve $\vec{r}(t)=\left(t^{2}-1\right) \hat{\mathbf{j}}+2 t \hat{\mathbf{k}}, 0 \leq t \leq 1$, if the density is...
(a) $\delta=4$
(b) $\delta(t)=\frac{3 t}{2}$
(c) $\delta(x, y, z)=z$
(d) $\delta(x, y, z)=y+2$

