Difficulty guide for worksheet:

C-level or B-level exam problem: 1 A-level exam problem or challenge for extra study: 2, 3, 4 beyond the scope and/or removed from syllabus: none

- **1.** Let \mathcal{D} be the parallelogram in the *xy*-plane with vertices (0,0), (-2,5), (1,7), and (-1,12).
 - (a) Find a linear mapping G that maps $[0,1] \times [0,1]$ in the *uv*-plane onto \mathcal{D} .
 - (b) Use a change of variables to evaluate $\iint_{\mathcal{D}} y^2 dA$.

2. Let $G(u, v) = \left(\frac{u}{v+1}, \frac{uv}{v+1}\right)$.

- (a) Describe the image, in the xy-plane, of the vertical line u = c.
- (b) Describe the image, in the xy-plane, of the horizontal line v = c.
- (c) Calculate Jac(G) as a function of u and v.
- (d) Calculate $G^{-1}(x, y)$.
- (e) Let \mathcal{D} be the region in the *xy*-plane bounded by the lines x + y = 3, x + y = 6, y = x, and y = 2x. Find a rectangle \mathcal{R} in the *uv*-plane such that $G(\mathcal{R}) = \mathcal{D}$.
- (f) Use the mapping G to calculate the integral $\iint_{\mathcal{D}} (x+y) dA$.

3. Let G(u, v) = (u - uv, uv).

- (a) Describe the image, in the xy-plane, of the vertical line u = c.
- (b) Describe the image, in the xy-plane, of the horizontal line v = c. (Be careful to consider the the case c = 1 separately. Why?)
- (c) Compute the Jacobian of G.
- (d) Let \mathcal{D} be the quadrilateral in the *xy*-plane with vertices (a, 0), (b, 0), (0, a), and (0, b) with 0 < a < b. Find a rectangle \mathcal{R} in the *uv*-plane such that $G(\mathcal{R}) = \mathcal{D}$.
- (e) Elementary geometry shows that the area of \mathcal{D} is $\frac{1}{2}(b^2 a^2)$. Use the mapping G and an appropriate integral to verify this formula.
- (f) Use the mapping G to calculate $\iint_{\mathcal{D}} xy \, dA$.
- **4.** Consider the mapping $G(u, v) = (u^2 v^2, 2uv)$. Let \mathcal{T} be the triangular region in the *uv*-plane given by $0 \le v \le u \le 2$, and put $\mathcal{D} = G(\mathcal{T})$.
 - (a) Sketch the region \mathcal{D} in the *xy*-plane. What is the image, in the *xy*-plane, of each boundary curve of \mathcal{T} ?
 - (b) Use the mapping G to calculate $\iint_{\mathcal{D}} \sqrt{x^2 + y^2} \, dA$.