Difficulty guide for worksheet:

C-level or B-level exam problem: 1, 2, 3, 4
A-level exam problem or challenge for extra study: 5, 6 beyond the scope and/or removed from syllabus: none

1. Calculate each integral.
(a) $\int_{0}^{\ln (4)} \int_{0}^{\ln (3)} \int_{0}^{\ln (2)} e^{-x+y+z} d z d y d x$
(b) $\int_{1}^{6} \int_{0}^{4-2 y / 3} \int_{0}^{12-2 y-3 z} \frac{1}{y} d x d z d y$
2. Sketch the region of integration for $\int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} \int_{0}^{\sqrt{1-y^{2}-z^{2}}} f(x, y, z) d x d y d z$.
3. Let \mathcal{T} be the tetrahedron with vertices $(0,0,0), P=(6,0,0), Q=(0,4,0)$, and $R=(0,0,2)$.
(a) Find an equation of the plane containing the points P, Q, and R.
(b) Evaluate the integral $\iiint_{\mathcal{T}} y d V$.
4. Let \mathcal{W} be the solid wedge above the $x y$-plane formed when the cylinder $x^{2}+y^{2}=4$ is cut by the planes $z=0$ and $y+z=0$. Use a triple integral to find the volume of \mathcal{W}.
5. Let \mathcal{W} be the solid wedge bounded by the parabolic cylinder $y=x^{2}$ and the planes $z=3-y$ and $z=0$. Calculate $\iiint_{\mathcal{W}} 35 z d V$.
6. Let \mathcal{W} be the solid in the first octant bounded by the planes $y=0, z=0$, and $y=x$, and the elliptic cylinder $4 x^{2}+z^{2}=4$. Write the triple integral of the continuous function $f(x, y, z)$ in each of the six possible orders of integration.
