Calculus 251:C3 Worksheet 15.3-15.4

(1) Sketch the region bounded by the given lines and curves, then write and evaluate a double integral to find the area.
(a) The x-axis, the y-axis, and the line $4 x+7 y=28$
(b) The parabola $y=-x^{2}$ and the line $y=x+2$
(c) The parabolas $y=x^{2}$ and $y=2 x-x^{2}$
(d) The lines $y=x, y=\frac{1}{3} x$, and $y=4$
(e) The lines $y=x-2$ and $y=-x$ and the curve $y=\sqrt{x}$
(f) The smaller region bounded by the circle $x^{2}+y^{2}=4$ and the line $y=2-x$
(2) Find the average height of the paraboloid $z=x^{2}+y^{2}$ above the square $[0,2] \times[0,2]$.
(3) Find the average value of $f(x, y)=\sin (x+y)$ over each of the following regions:
(a) The rectangle $[0, \pi] \times[0, \pi]$
(b) The rectangle $[0, \pi] \times[0, \pi / 2]$
(c) The triangle bounded by the coordinate axes and the line $y=\pi-x$
(4) Evaluate $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} d y d x$. Yes, you should convert to polar coordinates first!
(5) Find the area of the region inside the circle $x^{2}+y^{2}=4 x$.
(6) Evaluate $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{2}{\left(1+x^{2}+y^{2}\right)^{2}} d y d x$.
(7) Find the average height of the cone $z=\sqrt{x^{2}+y^{2}}$ above the disk $x^{2}+y^{2} \leq a^{2}$ in the $x y$-plane.
(8) Find the average distance from a point $P=(x, y)$ in the disk $x^{2}+y^{2} \leq a^{2}$ to the origin.

