Difficulty guide for worksheet:

C-level or B-level exam problem: 1, 2, 3, 5a
A-level exam problem or challenge for extra study: 4, 5b beyond the scope and/or removed from syllabus: none

1. Find the rate of change of f at the point P in the direction \boldsymbol{u}.
(a) $f(x, y)=\sin \left(x y+y^{2}\right), P=(0, \sqrt{\pi}), \boldsymbol{u}=\langle 2,-3\rangle$
(b) $f(x, y)=\sqrt{1+x^{2} y+x y^{2}}, P=(3,4), \boldsymbol{u}$ is in direction toward origin
(c) $f(x, y)=\frac{x y}{1+x y^{3}}, P=(-1,2), \boldsymbol{u}$ is in direction 30 degrees south of west
(d) $f(x, y, z)=x y z^{2}+x^{3} z, P=(1,-1,1), \boldsymbol{u}=\langle 0,1,1\rangle$
2. The temperature at the point (x, y, z) is given by $T(x, y, z)=x y z^{-1}$. A particle travels on the path given by $\boldsymbol{r}(t)=\left\langle e^{t}, t, t^{2}\right\rangle$. Find the rate of change of the temperature along the particle's path at $t=1$.
3. Suppose that $\boldsymbol{\nabla} f_{P}=\langle 2,-4,4\rangle$. Is f increasing or decreasing at P in the direction $\boldsymbol{v}=\langle 2,1,3\rangle$?
4. The height of some terrain is modeled by the equation $h=x e^{x^{2}-y}$. You are currently standing on the terrain above the point $P=(1,1)$. Assume the positive y-axis points in the north direction.
(a) If you travel from P in the northerly direction, what angle of inclination do you measure?
(b) Suppose you decide to travel from P in the direction of steepest descent. Find the compass angle along which you should initially travel. (Assume the angle is measured anticlockwise from the positive x-axis.)
(c) What is the steepest possible angle of inclination at P ?
(d) Your friend, who also starts at P, does not want to exert himself, and so he decides to walk along the terrain, keeping a constant height. Find the compass angle along which your friend should initially travel from P. (Assume the angle is measured anticlockwise from the positive x-axis.)
5. Find a function f with the given gradient.
(a) $\nabla f=\left\langle y^{2} \sin \left(x y^{2}\right)+6 x, 2 x y \sin \left(x y^{2}\right)\right\rangle$
(b) $\boldsymbol{\nabla} f=\left\langle 2 x y z^{2}, x^{2} z^{2}+8 y z^{3}, 2 x^{2} y z+12 y^{2} z^{2}\right\rangle$
