Calculus 251:C3 Worksheet 14.3-14.4

(1) Calculate all first derivatives for each function f.

(a)
$$f(x, y) = \cos\left(\frac{y}{x+y}\right)$$

(b) $f(u, v) = \ln(u^2 + uv)$
(c) $f(x, y, z) = ze^{xz-x^2z^3}$
(d) $f(s, t) = \tan^{-1}(st^2)$

(2) Calculate f_{xyxzy} for the following function:

$$f(x, y, z) = y\sin(xz)\sin(x+z) + (x+z^2)\tan(y) + x\tan\left(\frac{z+z^{-1}}{y-y^{-1}}\right)$$

- (3) Prove that there is no function f such that $f_x = xy^2$ and $f_y = -x^2y$
- (4) Let r, s, and t be independent parameters and suppose x, y, and z are given by

$$x = 4 - s - 6t$$
$$y = -r + 2s + 5t$$
$$z = 7r + 3s - t$$

Let w = f(x, y, z) where f is an arbitrary differentiable function. Calculate the sum

$$A(r,s,t) = \frac{\partial w}{\partial r} - 2\frac{\partial w}{\partial s} + \frac{\partial w}{\partial t}$$

Write your answer as a function of r, s, and t. Simplify as much as possible. Since f is arbitrary, your answer may still contain the symbol f or related symbols. But you must write your answer as a function of r, s, and t.

(5) Let z = f(x, y), where f is an arbitrary differentiable function. Suppose $x = r \cos(\theta)$ and $y = r \sin(\theta)$. Calculate both z_r and z_{θ} . Express your answer in terms of r and θ only.

This exercise shows how the derivatives in polar coordinates are related to the derivatives in rectangular coordinates.

- (6) Use the multivariable chain rule to calculate the specified partial derivatives.
 - (a) z_s and z_t , where $z = x^2 \sin(y)$, x = s t, and $y = t^2$
 - (b) w_s and w_t , where $w = \frac{x-z}{y+z}$, x = s + t, y = st, and z = s t
 - (c) $\frac{dU}{dt}$, where $U = \frac{xy^2}{z^8}$, $x = e^t$, $y = \sin(3t)$, and z = 4t + 1

(7) Suppose x and y are implicitly related by the equation F(x, y) = 0. Use the multivariable chain rule to show

$$\frac{\partial y}{\partial x} = -\frac{F_x}{F_y}$$

Then use this result to find y'(x) if $x^2 = xy^2 + \sin(y) + 3$.

(8) . Suppose x, y, and z are implicitly related by the equation F(x, y, z) = 0. Use the multivariable chain rule to show

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} \ , \ \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

Then use this result to find z_x and z_y if $x^2yz^2 = 10 - 3xz^3$.

- (9) For each implicit equation, calculate the specified partial derivative.
 - (a) z_x if $\sqrt{x^2 + 2xz + z^4} = 3$
 - (b) y_z if $y \ln(x^2 + y^2 + 4z) = 1$