Calculus 251:C3 Worksheet 14.3-14.4

(1) Calculate all first derivatives for each function f.
(a) $f(x, y)=\cos \left(\frac{y}{x+y}\right)$
(b) $f(u, v)=\ln \left(u^{2}+u v\right)$
(c) $f(x, y, z)=z e^{x z-x^{2} z^{3}}$
(d) $f(s, t)=\tan ^{-1}\left(s t^{2}\right)$
(2) Calculate $f_{x y x z y}$ for the following function:

$$
f(x, y, z)=y \sin (x z) \sin (x+z)+\left(x+z^{2}\right) \tan (y)+x \tan \left(\frac{z+z^{-1}}{y-y^{-1}}\right)
$$

(3) Prove that there is no function f such that $f_{x}=x y^{2}$ and $f_{y}=-x^{2} y$
(4) Let r, s, and t be independent parameters and suppose x, y, and z are given by

$$
\begin{gathered}
x=4-s-6 t \\
y=-r+2 s+5 t \\
z=7 r+3 s-t
\end{gathered}
$$

Let $w=f(x, y, z)$ where f is an arbitrary differentiable function. Calculate the sum

$$
A(r, s, t)=\frac{\partial w}{\partial r}-2 \frac{\partial w}{\partial s}+\frac{\partial w}{\partial t}
$$

Write your answer as a function of r, s, and t. Simplify as much as possible. Since f is arbitrary, your answer may still contain the symbol f or related symbols. But you must write your answer as a function of r, s, and t.
(5) Let $z=f(x, y)$, where f is an arbitrary differentiable function. Suppose $x=r \cos (\theta)$ and $y=r \sin (\theta)$. Calculate both z_{r} and z_{θ}. Express your answer in terms of r and θ only.
This exercise shows how the derivatives in polar coordinates are related to the derivatives in rectangular coordinates.
(6) Use the multivariable chain rule to calculate the specified partial derivatives.
(a) z_{s} and z_{t}, where $z=x^{2} \sin (y), x=s-t$, and $y=t^{2}$
(b) w_{s} and w_{t}, where $w=\frac{x-z}{y+z}, x=s+t, y=s t$, and $z=s-t$
(c) $\frac{d U}{d t}$, where $U=\frac{x y^{2}}{z^{8}}, x=e^{t}, y=\sin (3 t)$, and $z=4 t+1$
(7) Suppose x and y are implicitly related by the equation $F(x, y)=0$. Use the multivariable chain rule to show

$$
\frac{\partial y}{\partial x}=-\frac{F_{x}}{F_{y}}
$$

Then use this result to find $y^{\prime}(x)$ if $x^{2}=x y^{2}+\sin (y)+3$.
(8) . Suppose x, y, and z are implicitly related by the equation $F(x, y, z)=0$. Use the multivariable chain rule to show

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}, \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}
$$

Then use this result to find z_{x} and z_{y} if $x^{2} y z^{2}=10-3 x z^{3}$.
(9) For each implicit equation, calculate the specified partial derivative.
(a) z_{x} if $\sqrt{x^{2}+2 x z+z^{4}}=3$
(b) y_{z} if $y \ln \left(x^{2}+y^{2}+4 z\right)=1$

