Difficulty guide for worksheet:

C-level or B-level exam problem: 1, 2, 4, 6

A-level exam problem or challenge for extra study:

1. Which of the following does not parametrize a line or some portion of a line? Explain your answer.
(a) $\boldsymbol{r}(t)=\langle 2+3 t, 9-t, 12+7 t\rangle$
(c) $\boldsymbol{r}(t)=\langle 2 \cos (2 t), 5+3 \cos (2 t), \sin (2 t)\rangle$
(b) $\boldsymbol{r}(t)=\left\langle 1-t^{2}, 3+3 t^{2}, t^{3}\right\rangle$
(d) $\boldsymbol{r}(t)=\left\langle t^{3}, 4-8 t^{3}, 8+3 t^{3}\right\rangle$
2. Find a parametrization of each described curve.
(a) A circle of radius 3 with center $(-2,3,1)$, lying in a plane parallel to the $x z$-plane.
(b) The ellipse $4 y^{2}+9 z^{2}=36$ translated to have center $(-1,10,-5)$.
(c) The intersection of the surfaces $y^{2}-z^{2}=x-2$ and $y^{2}+z^{2}=9$.
(d) The intersection of the sphere $x^{2}+y^{2}+z^{2}=1$ and the paraboloid $z=x^{2}+y^{2}$.
3. We will show that the curve with the following parametrization lies in a plane.

$$
\boldsymbol{r}(t)=\left\langle t^{2}-1, t-2 t^{2}, 4-6 t\right\rangle
$$

(a) Show that the points on the curve at $t=0, t=1$, and $t=2$ do not lie on a line. Then find an equation of the plane that they determine.
(b) Show that for all t, the points on \mathcal{C} satisfy the equation of the plane from part (a).
4. Find a parametrization of the line tangent to the curve at the indicated value of t.
(a) $\boldsymbol{r}(t)=\left\langle 1-t^{2}, 5 t, 2 t^{3}\right\rangle$ at $t=2$
(b) $\boldsymbol{r}(t)=4 t^{-1} \boldsymbol{i}-6 t^{-3} \boldsymbol{k}$ at $t=1$
5. For $0 \leq t \leq 4 \pi$, the path of a particle is parametrized by

$$
\boldsymbol{r}(t)=\left\langle\cos (t) \sin (t), \sin (t)^{2}, \sin (t)\right\rangle
$$

(a) Show that the path of the particle is a closed loop.
(b) Let \mathcal{C} be the curve on which the particle travels. How many times does the particle traverse \mathcal{C} from $t=0$ to $t=4 \pi$? Justify your answer.
(c) Find an integral whose value is the length of \mathcal{C}.
(d) Find an integral whose value is the distance traveled by the particle.
6. Calculate the length of the described curve.
(a) $\boldsymbol{r}(t)=\left\langle 4 t, \sqrt{3} t^{3 / 2}, t^{3 / 2}\right\rangle, 0 \leq t \leq 1$
(b) $\boldsymbol{r}(t)=\left\langle 2 t, \ln (t), t^{2}\right\rangle, 1 \leq t \leq 4$

Solutions:
(1) (a) Yes.
(b) No.
(c) No.
(d) Yes.
(2)
(a)

$$
\begin{aligned}
& \vec{r}(t)=\langle-2+3 \cos (t), 3,1+3 \sin (t)\rangle \\
& 0 \leq t<2 \pi
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \vec{r}(t)=\langle-1,10+3 \cos (t),-5+2 \sin (t)\rangle \\
& 0 \leq t<2 \pi
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \vec{r}(t)=\langle 2+9 \cos (2 t), 3 \cos (t), 3 \sin (t)\rangle \\
& 0 \leq t<2 \pi
\end{aligned}
$$

(d) Let $R=\frac{-1+\sqrt{5}}{2}$.

$$
\begin{aligned}
& \vec{r}(t)=\left\langle\sqrt{1-R^{2}} \cos (t), \sqrt{1-R^{2} \sin }(t), R\right\rangle \\
& 0 \leq t<2 \pi
\end{aligned}
$$

(3) (a)

$$
\begin{aligned}
& \vec{u}=\vec{r}_{1}(1)-\vec{r}_{1}(0)=\langle 1,-1,-6\rangle \\
& \vec{v}=\vec{r}_{1}(2)-\vec{r}_{1}(0)=\langle 4,-6,-12\rangle \\
& \vec{u} \times \vec{v}=\langle-24,-12,-2\rangle
\end{aligned}
$$

Since $\vec{u} \times \vec{v} \neq 0$, the three pornts are not collinear.

$$
\begin{aligned}
& \vec{n}=\langle-24,-12,-2\rangle \\
& P=\vec{r}_{1}(0)=(-1,0,4)
\end{aligned}
$$

eq. of plane: $-24(x+1)-12 y-2(z-4)=0$
(b)

$$
\begin{aligned}
& -24\left(t^{2}-1+1\right)-12\left(t-2 t^{2}\right)-2(4-6 t-4)= \\
& =-24 t^{2}-12 t+24 t^{2}+12 t=0
\end{aligned}
$$

(4) (a)

$$
\begin{aligned}
\vec{v} & =\vec{r}^{\prime}(2)=\left.\left\langle-2 t, 5,6 t^{2}\right\rangle\right|_{t=2} \\
& =\langle-4,5,24\rangle \\
\vec{r}(2) & =\langle-3,10,16\rangle \\
\vec{L}(t) & =\langle-3-4 t, 10+5 t, 16+24 t\rangle
\end{aligned}
$$

(b)

$$
\begin{aligned}
\vec{v} & =\vec{r}^{\prime}(1)=\left.\left\langle-4 t^{-2}, 0,18 t^{-4}\right\rangle\right|_{t=1} \\
& =\langle-4,0,18\rangle \\
\vec{r}(1) & =\langle 4,0,-6\rangle \\
\vec{L}(t) & =\langle 4-4 t, 0,-6+18 t\rangle
\end{aligned}
$$

(5) $(a) \vec{r}(t)$ is continuous and $\vec{r}(0)=\vec{r}(4 \pi)$.
(b) twice
(c) $\int_{0}^{2 \pi} \sqrt{\frac{1}{2}(3+\cos (2 t))} d t$
(d) $\int_{0}^{4 \pi} \sqrt{\frac{1}{2}(3+\cos (2 t))} d t$
(6) (a)

$$
\begin{aligned}
& \int_{0}^{1} \sqrt{16+9 t} d t=\left.\frac{2}{27}(16+9 t)^{3 / 2}\right|_{0} ^{1} \\
& =\frac{2}{27}(125-64)=\frac{122}{27}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int_{1}^{4} \sqrt{4+\frac{1}{t^{2}}+4 t^{2}} d t= \\
& \int_{1}^{4} \sqrt{\left(2 t+\frac{1}{t}\right)^{2}} d t=\int_{1}^{4}\left(2 t+\frac{1}{t}\right) d t \\
& =\left.\left(t^{2}+\ln (t)\right)\right|_{1} ^{4}=(16+\ln (4))-(1+0) \\
& =15+\ln (4)
\end{aligned}
$$

