Difficulty guide for worksheet:	
C-level or B-level exam problem:	1, 2, 3, 4, 5, 6, 7, 8
A-level exam problem or challenge for extra study:	none
beyond the scope and/or removed from syllabus:	none

- **1.** For each pair of vectors, calculate both the dot product $\boldsymbol{u} \cdot \boldsymbol{v}$ and the cross product $\boldsymbol{u} \times \boldsymbol{v}$.
 - (a) $\boldsymbol{u} = \langle 1, 2, 1 \rangle$ and $\boldsymbol{v} = \langle -3, 2, 4 \rangle$ (b) $\boldsymbol{u} = \boldsymbol{j}$ and $\boldsymbol{v} = \boldsymbol{k}$
 - (b) $\mathbf{u} = \mathbf{j}$ and $\mathbf{v} = \mathbf{n}$
 - (c) $\boldsymbol{u} = 2\boldsymbol{i} 3\boldsymbol{j} + \boldsymbol{j}$ and $\boldsymbol{v} = -\boldsymbol{i} + \boldsymbol{j}$
- 2. Find the sine and cosine of the angle between each pair of vectors. Then determine whether the angle between the two vectors is acute, right, or obtuse.
 - (a) $\boldsymbol{i} 2\boldsymbol{j} + 5\boldsymbol{k}$ and $\boldsymbol{i} + 2\boldsymbol{j} \boldsymbol{k}$
 - (b) (2, 3, -1) and (-4, -6, 2)
 - (c) i + k and i j
- **3.** Suppose \boldsymbol{u} and \boldsymbol{v} are orthogonal with $\|\boldsymbol{u}\| = 2$ and $\|\boldsymbol{v}\| = 5$. Calculate $\|\boldsymbol{u} + \boldsymbol{v}\|$.
- 4. Suppose the angle between the unit vectors \boldsymbol{u} and \boldsymbol{v} is 120 degrees. Calculate the following.
 - (a) $\boldsymbol{u} \cdot \boldsymbol{v}$ (b) $\|\boldsymbol{u} 2\boldsymbol{v}\|$
- 5. For each pair of vectors, find the projection of v along u.
 - (a) $\boldsymbol{v} = \langle 3, -2, 1 \rangle$ along $\boldsymbol{u} = \boldsymbol{j}$
 - (b) $\boldsymbol{v} = 2\boldsymbol{i} \boldsymbol{j} + 6\boldsymbol{k}$ along $\boldsymbol{u} = \boldsymbol{i} + \boldsymbol{k}$
 - (c) $\boldsymbol{v} = 5\boldsymbol{i} + 5\boldsymbol{j} 2\boldsymbol{k}$ along $\boldsymbol{u} = \langle 1, 1, -1 \rangle$

6. Let $\boldsymbol{u} = \lambda \boldsymbol{i} - 2\lambda \boldsymbol{j} + \mu \boldsymbol{k}$ and $\boldsymbol{v} = 5\boldsymbol{i} - \mu \boldsymbol{j} + \lambda \boldsymbol{k}$, where λ and μ are unknown constants.

- (a) Find all pairs (λ, μ) such that \boldsymbol{u} and \boldsymbol{v} are orthogonal, or determine that no such pair exists.
- (b) Find all pairs (λ, μ) such that \boldsymbol{u} and \boldsymbol{v} are parallel, or determine that no such pair exists.
- 7. Find the area of the triangle spanned by the vectors $\boldsymbol{u} = 2\boldsymbol{i} \boldsymbol{j}$ and $\boldsymbol{v} = \boldsymbol{i} + 4\boldsymbol{j}$.
- 8. Calculate the following determinants. Fully simplify your answer.

$$\begin{vmatrix} 1 & -1 & 0 \\ 0 & 2 & -3 \\ 4 & -2 & 1 \end{vmatrix} , \begin{vmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{vmatrix} , \begin{vmatrix} \sin(\theta)\cos(\varphi) & \rho\cos(\theta)\cos(\varphi) & -\rho\sin(\theta)\sin(\varphi) \\ \sin(\theta)\sin(\varphi) & \rho\cos(\theta)\sin(\varphi) & \rho\sin(\theta)\cos(\varphi) \\ \cos(\theta) & -\rho\sin(\theta) & 0 \end{vmatrix}$$

Solutions

 $(\dot{U}(a) \vec{u} \cdot \vec{v} = 5$ $\vec{u} \times \vec{v} = 6\hat{\iota} - 7\hat{\iota} + 8\hat{k}$ (b) $\vec{u} \cdot \vec{v} = 0$ $\vec{u} \times \vec{v} = \hat{\iota}$ (c) $\vec{u} \cdot \vec{v} = -5$ $\vec{u} \times \vec{v} = -\hat{i} - \hat{j} - \hat{k}$ (2) (a) $\cos(\theta) = \frac{-8}{\sqrt{180}}$ obtuse $Sin(0) = \frac{\sqrt{116}}{\sqrt{180}}$ obtuse (180°) (b) $\cos(0) = -1$ $\sin(\theta) = 0$ (c) $\cos(\theta) = \frac{1}{2}$ acute $Sin(0) = \sqrt{3}$ (3) $\|\vec{u} + \vec{v}\| = 1/2q$

(4) (a) $\vec{u} \cdot \vec{v} = \cos(120^{\circ}) = -\frac{1}{2}$ (6) $\|\vec{u} - 2\vec{v}\|^2 = \|\vec{u}\|^2 - 4\vec{u}\cdot\vec{v} + 4\|\vec{v}\|^2$ $= (-4(-\frac{1}{2})+4.) = 7$ $\Rightarrow \| \vec{u} - 2\vec{v} \| = \sqrt{7}$ (5) (a) $-2\hat{j}$ (b) $4\hat{i} + 4\hat{k}$ (c) $4\hat{i} + 4\hat{j} - 4\hat{k}$ (b) (a) $0 = \vec{u} \cdot \vec{v} = 5\lambda + 2\mu\lambda + \mu\lambda = \lambda(5+3\mu)$ $\lambda = 0$ or $\mu = -\frac{5}{3}$ (6) $\vec{D} = \vec{U} \times \vec{V} =$ $= (-2\lambda^2 + \mu^2)\hat{\iota} - (\lambda^2 - 5\mu)\hat{\jmath} + (-\lambda\mu + 10\lambda)\hat{k}$ $-2\lambda^{2} + \mu^{2} = 0$ $\lambda^{2} - 5\mu = 0$ $-\lambda\mu + (0\lambda = 0$ $\begin{pmatrix} \lambda = \mu = 0 \\ \Omega R \\ \mu = 10, \lambda = \sqrt{50} \\ \mu = 10, \lambda = -\sqrt{50} \\ \mu = 10, \lambda = -\sqrt{50} \\ \end{pmatrix}$

(7)
$$A = \frac{1}{2} \| \vec{u} \times \vec{v} \| = \frac{2}{2}$$

(8) (a) 8
(b) adf
(c) $p^2 \sin(\varphi)$