Difficulty guide for worksheet:

C-level or B-level exam problem:
 A-level exam problem or challenge for extra study:
 $1,2,3,4,5,6,7,8$ none beyond the scope and/or removed from syllabus: none

1. For each pair of vectors, calculate both the dot product $\boldsymbol{u} \cdot \boldsymbol{v}$ and the cross product $\boldsymbol{u} \times \boldsymbol{v}$.
(a) $\boldsymbol{u}=\langle 1,2,1\rangle$ and $\boldsymbol{v}=\langle-3,2,4\rangle$
(b) $\boldsymbol{u}=\boldsymbol{j}$ and $\boldsymbol{v}=\boldsymbol{k}$
(c) $\boldsymbol{u}=2 \boldsymbol{i}-3 \boldsymbol{j}+\boldsymbol{j}$ and $\boldsymbol{v}=-\boldsymbol{i}+\boldsymbol{j}$
2. Find the sine and cosine of the angle between each pair of vectors. Then determine whether the angle between the two vectors is acute, right, or obtuse.
(a) $\boldsymbol{i}-2 \boldsymbol{j}+5 \boldsymbol{k}$ and $\boldsymbol{i}+2 \boldsymbol{j}-\boldsymbol{k}$
(b) $\langle 2,3,-1\rangle$ and $\langle-4,-6,2\rangle$
(c) $\boldsymbol{i}+\boldsymbol{k}$ and $\boldsymbol{i}-\boldsymbol{j}$
3. Suppose \boldsymbol{u} and \boldsymbol{v} are orthogonal with $\|\boldsymbol{u}\|=2$ and $\|\boldsymbol{v}\|=5$. Calculate $\|\boldsymbol{u}+\boldsymbol{v}\|$.
4. Suppose the angle between the unit vectors \boldsymbol{u} and \boldsymbol{v} is 120 degrees. Calculate the following.
(a) $\boldsymbol{u} \cdot \boldsymbol{v}$
(b) $\|\boldsymbol{u}-2 \boldsymbol{v}\|$
5. For each pair of vectors, find the projection of \boldsymbol{v} along \boldsymbol{u}.
(a) $\boldsymbol{v}=\langle 3,-2,1\rangle$ along $\boldsymbol{u}=\boldsymbol{j}$
(b) $\boldsymbol{v}=2 \boldsymbol{i}-\boldsymbol{j}+6 \boldsymbol{k}$ along $\boldsymbol{u}=\boldsymbol{i}+\boldsymbol{k}$
(c) $\boldsymbol{v}=5 \boldsymbol{i}+5 \boldsymbol{j}-2 \boldsymbol{k}$ along $\boldsymbol{u}=\langle 1,1,-1\rangle$
6. Let $\boldsymbol{u}=\lambda \boldsymbol{i}-2 \lambda \boldsymbol{j}+\mu \boldsymbol{k}$ and $\boldsymbol{v}=5 \boldsymbol{i}-\mu \boldsymbol{j}+\lambda \boldsymbol{k}$, where λ and μ are unknown constants.
(a) Find all pairs (λ, μ) such that \boldsymbol{u} and \boldsymbol{v} are orthogonal, or determine that no such pair exists.
(b) Find all pairs (λ, μ) such that \boldsymbol{u} and \boldsymbol{v} are parallel, or determine that no such pair exists.
7. Find the area of the triangle spanned by the vectors $\boldsymbol{u}=2 \boldsymbol{i}-\boldsymbol{j}$ and $\boldsymbol{v}=\boldsymbol{i}+4 \boldsymbol{j}$.
8. Calculate the following determinants. Fully simplify your answer.

$$
\left|\begin{array}{rrr}
1 & -1 & 0 \\
0 & 2 & -3 \\
4 & -2 & 1
\end{array}\right|,\left|\begin{array}{lll}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right|,\left|\begin{array}{ccc}
\sin (\theta) \cos (\varphi) & \rho \cos (\theta) \cos (\varphi) & -\rho \sin (\theta) \sin (\varphi) \\
\sin (\theta) \sin (\varphi) & \rho \cos (\theta) \sin (\varphi) & \rho \sin (\theta) \cos (\varphi) \\
\cos (\theta) & -\rho \sin (\theta) & 0
\end{array}\right|
$$

Solutions
(1) (a)

$$
\begin{aligned}
& \vec{u} \cdot \vec{v}=5 \\
& \vec{u} \times \vec{v}=6 \hat{\imath}-7 \hat{\jmath}+8 \hat{k}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \vec{u} \cdot \vec{v}=0 \\
& \vec{u} \times \vec{v}=\tau
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \vec{u} \cdot \vec{v}=-5 \\
& \vec{u} \times \vec{v}=-\hat{\imath}-\hat{\jmath}-\hat{k}
\end{aligned}
$$

(2) (a)

$$
\begin{aligned}
& \cos (\theta)=\frac{-8}{\sqrt{180}} \quad \text { obtuse } \\
& \sin (\theta)=\frac{\sqrt{116}}{\sqrt{180}}
\end{aligned}
$$

(b)

$$
\begin{array}{ll}
\cos (\theta)=-1 & \text { obtuse }\left(180^{\circ}\right) \\
\sin (\theta)=0 &
\end{array}
$$

(c)

$$
\begin{aligned}
& \cos (\theta)=\frac{1}{2} \quad \text { acute } \\
& \sin (\theta)=\frac{\sqrt{3}}{2}
\end{aligned}
$$

(3) $\|\vec{u}+\vec{v}\|=\sqrt{2 q}$
(4) (a) $\vec{u} \cdot \vec{v}=\cos \left(120^{\circ}\right)=-\frac{1}{2}$
(b)

$$
\begin{aligned}
\|\vec{u}-2 \vec{v}\|^{2} & =\|\vec{u}\|^{2}-4 \vec{u} \cdot \vec{v}+4\|\vec{v}\|^{2} \\
& =1-4\left(-\frac{1}{2}\right)+4 \cdot 1=7 \\
\Rightarrow\|\vec{u}-2 \vec{v}\| & =\sqrt{7}
\end{aligned}
$$

(5) $(a)-2 \hat{\jmath}$
(b) $4 \hat{\imath}+4 \hat{k}$
(c) $4 \hat{\imath}+4 \hat{\jmath}-4 \hat{k}$
(6) (a)

$$
\begin{aligned}
& 0=\vec{u} \cdot \vec{v}=5 \lambda+2 \mu \lambda+\mu \lambda=\lambda(5+3 \mu) \\
& \lambda=0 \quad \text { or } \quad \mu=-5 / 3
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \overrightarrow{0}=\vec{u} \times \vec{v}= \\
& =\left(-2 \lambda^{2}+\mu^{2}\right) \hat{\imath}-\left(\lambda^{2}-5 \mu\right) \hat{\jmath}+(-\lambda \mu+10 \lambda) \hat{k}
\end{aligned}
$$

$$
\left.\begin{array}{r}
-2 \lambda^{2}+\mu^{2}=0 \\
\lambda^{2}-5 \mu=0 \\
-\lambda \mu+10 \lambda=0
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
\lambda=\mu=0 \\
\underline{O R} \\
\mu=10, \lambda=\sqrt{50} \\
\text { OR } \\
\mu=10, \lambda=-\sqrt{50}
\end{array}\right.
$$

(7) $A=\frac{1}{2}\|\vec{u} \times \vec{v}\|=\frac{9}{2}$
(8) (a) 8
(b) adf
(c) $\rho^{2} \sin (\varphi)$

