
Calculus 251:C3 Worksheet 12.1-12.2

- (1) For each pair P,Q, find the components of \overrightarrow{PQ} and calculate $\left\|\overrightarrow{PQ}\right\|$
 - (a) P = (-3, -5), Q = (4, -6)
 - (b) $P = (2e, 1 2\pi), Q = (2e + \pi, 1 + \pi)$
 - (c) P = (3, -8, 2), Q = (7, 4, -7)
 - (d) P = (1, 2, 3, 4), Q = (3, -1, 5, -1) [Note: Yes, this problem is in \mathbb{R}^4]
- (2) Perform the indicated vector operation.
 - (a) $\langle -4, 6 \rangle \langle 2, -3 \rangle$
 - (b) $\langle 3, 8, \pi \rangle + 2 \langle 2, -4, -2\pi \rangle$
 - (c) $2(3\hat{\mathbf{i}} 2\hat{\mathbf{j}}) 3(\hat{\mathbf{i}} + 3\hat{\mathbf{j}} 2\hat{\mathbf{k}})$
 - (d) $\langle \sin^2(\frac{\pi}{7}), \ln 27, \sqrt{2} \rangle \langle -\cos^2(\frac{\pi}{7}), \ln 9, \sqrt{3} \rangle$
- (3) Find the unit vector $\vec{e}_{\vec{v}}$ where $\vec{v} = 2\hat{\mathbf{i}} 3\hat{\mathbf{j}}$
- (4) Find the vector \vec{v} which satisfies the equation $3\vec{v} \langle 3, 2, -5 \rangle = \langle 0, 1, 2 \rangle$
- (5) Let $\vec{u} = \langle 1, 3 \rangle$, $\vec{v} = \langle 1, -1 \rangle$, and $\vec{w} = \langle 3, 1 \rangle$. Write \vec{u} as a linear combination of \vec{v} and \vec{w} .
- (6) Find the magnitudes of the forces on cables 1 and 2 in the following diagram:

