Note: This worksheet includes all of the recommended textbook problems with a few extras.

- (1) Verify Stokes' Theorem for the given vector field and surface, orienting the surface with upward-pointing normal.
 - (a) $\vec{F} = \langle 2xy, x, y + z \rangle$, the surface $z = 1 x^2 y^2$ for $x^2 + y^2 \le 1$.
 - (b) $\vec{F} = \langle y, x, x^2 + y^2 \rangle$, the surface $x^2 + y^2 + z^2 = 1$ for $z \ge 0$.
- (2) Caculate $\operatorname{curl}(\vec{F})$ and then apply Stokes' Theorem to compute the flux of $\operatorname{curl}(\vec{F})$ through the given surface using a line integral.
 - (a) $\vec{F} = \langle e^{z^2} y, e^{z^3} + x, \cos(xz) \rangle$, the surface $x^2 + y^2 + z^2 = 1$ for $z \ge 0$ with outward-pointing normal.
 - (b) $\vec{F} = \langle 3z, 5x, -2y \rangle$, the surface $z = x^2 + y^2$ for $z \leq 4$ with upward-pointing normal.
 - (c) $\vec{F} = \langle yz, xz, xy \rangle$, the surface $x^2 + y^2 = 1$ for $1 \le z \le 4$ with outward-pointing normal.
- (3) Use Stokes' Theorem to evaluate $\oint_{\mathcal{C}} \vec{F} \cdot d\vec{r}$ by finding the flux of $\operatorname{curl}(\vec{F})$ across an appropriate surface.
 - (a) $\vec{F} = \langle 3y, -2x, 3y \rangle$, C is the circle $x^2 + y^2 = 9, z = 2$ oriented counterclockwise as viewed from above.
 - (b) $\vec{F} = \langle xz, xy, yz \rangle$, C is the rectangle with vertices (0, 0, 0), (0, 0, 2), (3, 0, 2), (3, 0, 0) oriented counterclockwise as viewed from the positive y-axis.
 - (c) $\vec{F} = \langle y, z, x \rangle$, C is the rectangle with vertices (0, 0, 0), (3, 0, 0), (0, 3, 3) oriented counterclockwise as viewed from above.
- (4) Let $\vec{F} = \langle y^2, 2z + x, 2y^2 \rangle$. Use Stokes' Theorem to find a plane with equation ax + by + cz = 0 (where a, b, c are not all zero) such that $\oint_{\mathcal{C}} \vec{F} \cdot d\vec{r} = 0$ for every closed \mathcal{C} lying in the plane.
- (5) Let $\vec{F} = \langle y^2, x^2, z^2 \rangle$. Show that for any two closed curves C_1, C_2 going exactly once around a cylinder whose central axis is the z-axis, $\oint_{C_1} \vec{F} \cdot d\vec{r} = \oint_{C_2} \vec{F} \cdot d\vec{r}$
- (6) Let I be the flux of $\vec{F} = \langle e^y, 2xe^{x^2}, z^2 \rangle$ through the upper hemisphere \mathcal{S} of the unit sphere.
 - (a) Let $\vec{G} = \langle e^y, 2xe^{x^2}, 0 \rangle$. Find a vector field \vec{A} such that $\vec{\nabla} \times \vec{A} = \vec{G}$.
 - (b) Use Stokes' Theorem to show that the flux of \vec{G} through \mathcal{S} is 0. (*Hint:* Calculate the circulation of \vec{A} around $\partial \mathcal{S}$.)
 - (c) Calculate I. (Hint: Use (b) to show that I is the flux of $(0,0,z^2)$ through S.)