Difficulty guide for worksheet:

C-level or B-level exam problem: 1, 2, 3, 4, 5, 6 A-level exam problem or challenge for extra study: 7, 8, 9 beyond the scope and/or removed from syllabus: none

- **1.** Let S be the surface with parametrization $G(u, v) = (u^2 v^2, u + v, u v)$. Find an equation of the plane tangent to S at the point where u = 2 and v = 3.
- **2.** Let S be the sphere centered at the origin with radius 3. Find an equation of the plane tangent to S at the point (x, y, z) = (1, -2, 2).
- **3.** Let \mathcal{S} be the triangle with vertices (0, 0, 3), (1, 0, 2), and (0, 4, 1).
 - (a) Find a parametrization of \mathcal{S} .
 - (b) Calculate $\iint_{\mathcal{S}} (xy + e^z) dS$.

4. Let S be the portion of the graph of $z = x + y^2$ above the triangle in the *xy*-plane with vertices (0,0,0), (1,1,0), and (0,1,0). Calculate $\int_{S} (z-x) \, dS.$

- **5.** A surface is parametrized by G(x, y) = (x, y, xy). Let S be the part of the surface with parameter domain $\mathcal{D} = \{(x, y) : x^2 + y^2 \leq 1, x \geq 0 \ y \geq 0\}.$
 - (a) Calculate T_x , T_y , and N(x, y).
 - (b) Calculate the surface area of \mathcal{S} .
 - (c) Calculate the average z-coordinate of \mathcal{S} .
- 6. Calculate the area of the portion of the plane y + 2z = 2 inside the cylinder $x^2 + y^2 = 1$.
- 7. Calculate the area of the lower portion cut from the sphere $x^2 + y^2 + z^2 = 2$ by the cone $z = \sqrt{x^2 + y^2}$.
- 8. Find the center of mass of a thin shell of density $\delta(x, y, z) = z^{-2}$ cut from the cone $z = \sqrt{x^2 + y^2}$ by the planes z = 2 and z = 4.
- 9. Let S be the surface that consists of the portion of the sphere $x^2 + y^2 + z^2 = 9$ in the first octant that is also both outside the cylinder $x^2 + y^2 = 1$ and above the plane $z = \sqrt{5}$.
 - (a) Find a parametrization for \mathcal{S} .
 - (b) Calculate the normal vector \mathbf{N} . Does the normal vector induced by your parametrization point inward or outward?