Difficulty guide for worksheet:

C-level or B-level exam problem: 1, 2, 3, 4
A-level exam problem or challenge for extra study: 5 beyond the scope and/or removed from syllabus: none

1. Suppose the vector field \boldsymbol{F} is continuous and $\boldsymbol{F}=\langle f, g\rangle=\boldsymbol{\nabla} u$, with $u(1,2)=7, u(3,6)=10$, and $u(6,4)=20$. Evaluate the following integrals, if possible.
(a) $\int_{\mathcal{C}} \boldsymbol{F} \cdot d \boldsymbol{r}$, where \mathcal{C} is the path $\boldsymbol{r}(t)=\left\langle 2 t-1, t^{2}+t\right\rangle$ for $1 \leq t \leq 2$
(b) $\int_{\mathcal{C}} \boldsymbol{F} \cdot \boldsymbol{T} d s$, where \mathcal{C} is a smooth curve from $(1,2)$ to $(6,4)$
(c) $\int_{\mathcal{C}}(f d x+g d y)$, where \mathcal{C} is the path consisting of the line segment from $(6,4)$ to $(1,2)$ followed by the line segment from $(1,2)$ to $(3,6)$
(d) $\int_{\mathcal{C}} \boldsymbol{F} \cdot d \boldsymbol{r}$, where \mathcal{C} is a circle, oriented clockwise, starting and ending at $(7,3)$
2. Let $\boldsymbol{F}=\langle\cos (2 y-z),-2 x \sin (2 y-z), x \sin (2 y-z)\rangle$.
(a) Show that \boldsymbol{F} is conservative on \mathbb{R}^{3}.
(b) Find a potential for \boldsymbol{F}.
(c) Let \mathcal{C} be the path $\boldsymbol{r}(t)=\left\langle t^{2}, t, t\right\rangle$ for $0 \leq t \leq \pi$. Calculate the line integral of \boldsymbol{F} along \mathcal{C}.
3. Calculate the work done by the force $\boldsymbol{F}=e^{-x}\langle\cos (y), \sin (y)\rangle$ on a particle that travels around the square $[-1,1] \times[-1,1]$ anticlockwise, starting from the upper right vertex.
4. Let \mathcal{C} be the path $\boldsymbol{r}(t)=\left\langle t^{2}, t^{3}, t-1\right\rangle$ for $1 \leq t \leq 2$. Calculate the line integral

$$
\int_{\mathcal{C}}\left(y e^{z} d x+x e^{z} d y+x y e^{z} d z\right)
$$

5. Let $\boldsymbol{F}=\left\langle 2 x y+5, x^{2}-4 z,-3 y\right\rangle$ and $\boldsymbol{G}=\langle 0,0, y\rangle$, and put $\boldsymbol{H}=\boldsymbol{F}-\boldsymbol{G}$. Let \mathcal{C} be the path $\boldsymbol{r}(t)=\left\langle e^{t} \sin \left(\pi t^{3} / 2\right), e^{-t} \cos (\pi t), e^{t}\right\rangle$ for $0 \leq t \leq 1$.
(a) Show that both \boldsymbol{F} and \boldsymbol{G} are not conservative, but \boldsymbol{H} is conservative.
(b) Find a potential for \boldsymbol{H}.
(c) Use part (b) to calculate the line integral of \boldsymbol{H} along \mathcal{C}.
(d) Calculate the line integral of \boldsymbol{G} along \mathcal{C}.
(e) Use parts (c) and (d) to calculate the line integral of \boldsymbol{F} along \mathcal{C}.
