Difficulty guide for worksheet:	
C-level or B-level exam problem:	1, 2, 3, 4
A-level exam problem or challenge for extra study:	5
beyond the scope and/or removed from syllabus:	none

- **1.** Suppose the vector field \mathbf{F} is continuous and $\mathbf{F} = \langle f, g \rangle = \nabla u$, with u(1, 2) = 7, u(3, 6) = 10, and u(6, 4) = 20. Evaluate the following integrals, if possible.

 - (d) $\int_{\mathcal{C}} \boldsymbol{F} \cdot d\boldsymbol{r}$, where \mathcal{C} is a circle, oriented clockwise, starting and ending at (7,3)

2. Let $\mathbf{F} = \langle \cos(2y-z), -2x\sin(2y-z), x\sin(2y-z) \rangle$.

- (a) Show that \boldsymbol{F} is conservative on \mathbb{R}^3 .
- (b) Find a potential for F.
- (c) Let \mathcal{C} be the path $\mathbf{r}(t) = \langle t^2, t, t \rangle$ for $0 \leq t \leq \pi$. Calculate the line integral of \mathbf{F} along \mathcal{C} .
- **3.** Calculate the work done by the force $\mathbf{F} = e^{-x} \langle \cos(y), \sin(y) \rangle$ on a particle that travels around the square $[-1, 1] \times [-1, 1]$ anticlockwise, starting from the upper right vertex.
- **4.** Let \mathcal{C} be the path $\mathbf{r}(t) = \langle t^2, t^3, t-1 \rangle$ for $1 \leq t \leq 2$. Calculate the line integral

$$\int_{\mathcal{C}} \left(y e^z \, dx + x e^z \, dy + x y e^z \, dz \right)$$

- 5. Let $\mathbf{F} = \langle 2xy + 5, x^2 4z, -3y \rangle$ and $\mathbf{G} = \langle 0, 0, y \rangle$, and put $\mathbf{H} = \mathbf{F} \mathbf{G}$. Let \mathcal{C} be the path $\mathbf{r}(t) = \langle e^t \sin(\pi t^3/2), e^{-t} \cos(\pi t), e^t \rangle$ for $0 \le t \le 1$.
 - (a) Show that both F and G are not conservative, but H is conservative.
 - (b) Find a potential for \boldsymbol{H} .
 - (c) Use part (b) to calculate the line integral of \boldsymbol{H} along \mathcal{C} .
 - (d) Calculate the line integral of \boldsymbol{G} along \mathcal{C} .
 - (e) Use parts (c) and (d) to calculate the line integral of F along C.