Difficulty guide for worksheet:

C-level or B-level exam problem: 1, 2, 3, 5

A-level exam problem or challenge for extra study: 4 beyond the scope and/or removed from syllabus: none

1. For each part, calculate $\int_{\mathcal{C}} f d s$ for the given function f and curve \mathcal{C}.
(a) $f(x, y)=x y ; \mathcal{C}$ is the unit circle
(b) $f(x, y)=x^{2}-2 y^{2} ; \mathcal{C}$ is the line segment from the origin to the point $(\sqrt{8}, \sqrt{8})$
(c) $f(x, y)=x ; \mathcal{C}$ is the curve $\boldsymbol{r}(t)=\left\langle t^{3}, 4 t\right\rangle$ for $0 \leq t \leq 1$
(d) $f(x, y, z)=y-z ; \mathcal{C}$ is one turn of the helix $\boldsymbol{r}(t)=\langle 3 \cos (t), 3 \sin (t), 4 t\rangle$ starting from the point $(3,0,0)$
(e) $f(x, y, z)=x z ; \mathcal{C}$ is the line segment from the origin to $(3,2,6)$ followed by the line segment from $(3,2,6)$ to $(7,9,10)$
2. For each part, calculate $\int_{\mathcal{C}} \boldsymbol{F} \cdot d \boldsymbol{r}$ for the given vector field \boldsymbol{F} and curve \mathcal{C}.
(a) $\boldsymbol{F}(x, y)=\langle x, y\rangle ; \mathcal{C}$ is the portion of the parabola $16 y=x^{2}$ from $(4,1)$ to the origin.
(b) $\boldsymbol{F}(x, y)=\frac{\langle x, y\rangle}{\left(x^{2}+y^{2}\right)^{3 / 2}} ; \mathcal{C}$ is the path $\boldsymbol{r}(t)=\left\langle t^{2}, 3 t^{2}\right\rangle$ for $1 \leq t \leq 2$
(c) $\boldsymbol{F}(x, y, z)=\langle-y, x, z\rangle ; \mathcal{C}$ is the helix $\boldsymbol{r}(t)=\left\langle 2 \cos (t), 2 \sin (t), \frac{t}{2 \pi}\right\rangle$ for $0 \leq t \leq 2 \pi$
(d) $\boldsymbol{F}(x, y, z)=\langle x+y, x-y, x\rangle ; \mathcal{C}$ is the line segment from $(1,2,4)$ to $(3,8,13)$
(e) $\boldsymbol{F}(x, y)=\left\langle x^{2}, x y\right\rangle ; \mathcal{C}$ is a quarter circle with radius 3 centered at the origin from $(0,3)$ to $(-3,0)$
3. Let \mathcal{C} be the path $\boldsymbol{r}(t)=\langle\cos (t), \tan (t), t\rangle$ for $0 \leq t \leq \pi / 4$. Calculate

$$
\int_{\mathcal{C}}\left(z d x+x^{2} d y+y d z\right)
$$

4. A particle travels in the force field $\boldsymbol{F}(x, y, z)=\left\langle e^{z}, e^{x-y}, e^{y}\right\rangle$ along the piecewise linear path starting from the origin, then to $(0,0,1)$, then to $(0,1,1)$, and ending at $(-1,1,1)$. Calculate the work done by the force field on the particle.
5. Let \mathcal{C} be the curve $y=x^{4 / 3}$ in the $x y$-plane from $(1,1)$ to $(8,16)$. Let \mathcal{R} be the sheet that consists of all points below the surface $z=x / y$ and above the curve \mathcal{C}. Calculate the area of \mathcal{R}.
