Difficulty guide for worksheet:	
C-level or B-level exam problem:	1, 2, 3, 5
A-level exam problem or challenge for extra study:	4
beyond the scope and/or removed from syllabus:	none

1. For each part, calculate $\int_{\mathcal{C}} f \, ds$ for the given function f and curve \mathcal{C} .

- (a) f(x, y) = xy; C is the unit circle
- (b) $f(x,y) = x^2 2y^2$; C is the line segment from the origin to the point $(\sqrt{8}, \sqrt{8})$
- (c) f(x,y) = x; C is the curve $\mathbf{r}(t) = \langle t^3, 4t \rangle$ for $0 \le t \le 1$
- (d) f(x, y, z) = y z; C is one turn of the helix $\mathbf{r}(t) = \langle 3\cos(t), 3\sin(t), 4t \rangle$ starting from the point (3, 0, 0)
- (e) f(x, y, z) = xz; C is the line segment from the origin to (3, 2, 6) followed by the line segment from (3, 2, 6) to (7, 9, 10)

2. For each part, calculate $\int_{\mathcal{C}} \boldsymbol{F} \cdot d\boldsymbol{r}$ for the given vector field \boldsymbol{F} and curve \mathcal{C} .

(a) $F(x,y) = \langle x,y \rangle$; C is the portion of the parabola $16y = x^2$ from (4,1) to the origin.

(b)
$$\boldsymbol{F}(x,y) = \frac{\langle x,y \rangle}{(x^2+y^2)^{3/2}}$$
; \mathcal{C} is the path $\boldsymbol{r}(t) = \langle t^2, 3t^2 \rangle$ for $1 \le t \le 2$

- (c) $\boldsymbol{F}(x, y, z) = \langle -y, x, z \rangle; \mathcal{C}$ is the helix $\boldsymbol{r}(t) = \langle 2\cos(t), 2\sin(t), \frac{t}{2\pi} \rangle$ for $0 \le t \le 2\pi$
- (d) $F(x, y, z) = \langle x + y, x y, x \rangle$; C is the line segment from (1, 2, 4) to (3, 8, 13)
- (e) $\mathbf{F}(x,y) = \langle x^2, xy \rangle$; \mathcal{C} is a quarter circle with radius 3 centered at the origin from (0,3) to (-3,0)
- **3.** Let \mathcal{C} be the path $\mathbf{r}(t) = \langle \cos(t), \tan(t), t \rangle$ for $0 \le t \le \pi/4$. Calculate

$$\int_{\mathcal{C}} \left(z \, dx + x^2 \, dy + y \, dz \right)$$

- 4. A particle travels in the force field $F(x, y, z) = \langle e^z, e^{x-y}, e^y \rangle$ along the piecewise linear path starting from the origin, then to (0, 0, 1), then to (0, 1, 1), and ending at (-1, 1, 1). Calculate the work done by the force field on the particle.
- 5. Let C be the curve $y = x^{4/3}$ in the xy-plane from (1, 1) to (8, 16). Let \mathcal{R} be the sheet that consists of all points below the surface z = x/y and above the curve C. Calculate the area of \mathcal{R} .