Difficulty guide for worksheet:

C-level or B-level exam problem: 1

- A-level exam problem or challenge for extra study: 2, 3, 4 beyond the scope and/or removed from syllabus: none
- 1. Let \mathcal{D} be the parallelogram in the xy-plane with vertices (0,0), (-2,5), (1,7), and (-1,12).
 - (a) Find a linear mapping G that maps $[0,1] \times [0,1]$ in the uv-plane onto \mathcal{D} .
 - (b) Use a change of variables to evaluate $\iint_{\mathcal{D}} y^2 dA$.
- **2.** Let $G(u, v) = \left(\frac{u}{v+1}, \frac{uv}{v+1}\right)$.
 - (a) Describe the image, in the xy-plane, of the vertical line u = c.
 - (b) Describe the image, in the xy-plane, of the horizontal line v = c.
 - (c) Calculate Jac(G) as a function of u and v.
 - (d) Calculate $G^{-1}(x,y)$.
 - (e) Let \mathcal{D} be the region in the xy-plane bounded by the lines $x+y=3, \ x+y=6, \ y=x,$ and y=2x. Find a rectangle \mathcal{R} in the uv-plane such that $G(\mathcal{R})=\mathcal{D}$.
 - (f) Use the mapping G to calculate the integral $\iint_{\mathcal{D}} (x+y) dA$.
- **3.** Let G(u, v) = (u uv, uv).
 - (a) Describe the image, in the xy-plane, of the vertical line u = c.
 - (b) Describe the image, in the xy-plane, of the horizontal line v=c. (Be careful to consider the the case c=1 separately. Why?)
 - (c) Compute the Jacobian of G.
 - (d) Let \mathcal{D} be the quadrilateral in the xy-plane with vertices (a,0), (b,0), (0,a), and (0,b) with 0 < a < b. Find a rectangle \mathcal{R} in the uv-plane such that $G(\mathcal{R}) = \mathcal{D}$.
 - (e) Elementary geometry shows that the area of \mathcal{D} is $\frac{1}{2}(b^2 a^2)$. Use the mapping G and an appropriate integral to verify this formula.
 - (f) Use the mapping G to calculate $\iint_{\mathcal{D}} xy \, dA$.
- **4.** Consider the mapping $G(u, v) = (u^2 v^2, 2uv)$. Let \mathcal{T} be the triangular region in the uv-plane given by $0 \le v \le u \le 2$, and put $\mathcal{D} = G(\mathcal{T})$.
 - (a) Sketch the region \mathcal{D} in the xy-plane. What is the image, in the xy-plane, of each boundary curve of \mathcal{T} ?
 - (b) Use the mapping G to calculate $\iint_{\mathcal{D}} \sqrt{x^2 + y^2} dA$.