Difficulty guide for worksheet:

C-level or B-level exam problem: 1
A-level exam problem or challenge for extra study: 2, 3, 4 beyond the scope and/or removed from syllabus: none

1. Let \mathcal{D} be the parallelogram in the $x y$-plane with vertices $(0,0),(-2,5),(1,7)$, and $(-1,12)$.
(a) Find a linear mapping G that maps $[0,1] \times[0,1]$ in the $u v$-plane onto \mathcal{D}.
(b) Use a change of variables to evaluate $\iint_{\mathcal{D}} y^{2} d A$.
2. Let $G(u, v)=\left(\frac{u}{v+1}, \frac{u v}{v+1}\right)$.
(a) Describe the image, in the $x y$-plane, of the vertical line $u=c$.
(b) Describe the image, in the $x y$-plane, of the horizontal line $v=c$.
(c) Calculate $\operatorname{Jac}(G)$ as a function of u and v.
(d) Calculate $G^{-1}(x, y)$.
(e) Let \mathcal{D} be the region in the $x y$-plane bounded by the lines $x+y=3, x+y=6, y=x$, and $y=2 x$. Find a rectangle \mathcal{R} in the $u v$-plane such that $G(\mathcal{R})=\mathcal{D}$.
(f) Use the mapping G to calculate the integral $\iint_{\mathcal{D}}(x+y) d A$.
3. Let $G(u, v)=(u-u v, u v)$.
(a) Describe the image, in the $x y$-plane, of the vertical line $u=c$.
(b) Describe the image, in the $x y$-plane, of the horizontal line $v=c$. (Be careful to consider the the case $c=1$ separately. Why?)
(c) Compute the Jacobian of G.
(d) Let \mathcal{D} be the quadrilateral in the $x y$-plane with vertices $(a, 0),(b, 0),(0, a)$, and $(0, b)$ with $0<a<b$. Find a rectangle \mathcal{R} in the $u v$-plane such that $G(\mathcal{R})=\mathcal{D}$.
(e) Elementary geometry shows that the area of \mathcal{D} is $\frac{1}{2}\left(b^{2}-a^{2}\right)$. Use the mapping G and an appropriate integral to verify this formula.
(f) Use the mapping G to calculate $\iint_{\mathcal{D}} x y d A$.
4. Consider the mapping $G(u, v)=\left(u^{2}-v^{2}, 2 u v\right)$. Let \mathcal{T} be the triangular region in the $u v$-plane given by $0 \leq v \leq u \leq 2$, and put $\mathcal{D}=G(\mathcal{T})$.
(a) Sketch the region \mathcal{D} in the $x y$-plane. What is the image, in the $x y$-plane, of each boundary curve of \mathcal{T} ?
(b) Use the mapping G to calculate $\iint_{\mathcal{D}} \sqrt{x^{2}+y^{2}} d A$.
