Difficulty guide for worksheet:

C-level or B-level exam problem: 1a, 1b, 1c, 1e, 2a, 3, 4, 5 *A-level exam problem or challenge for extra study*: 1d, 1f, 2b, 6 *beyond the scope and/or removed from syllabus*: none

- 1. Find the volume of each region or type of solid.
 - (a) the region bounded by the paraboloid $z = x^2 + y^2$ and the cone $z = 2 \sqrt{x^2 + y^2}$
 - (b) the region below the surface z = xy+10 and above the annular region $\mathcal{R} = \{(x, y) : 4 \le x^2 + y^2 \le 16\}$
 - (c) the region inside both the cone $\varphi = \frac{\pi}{6}$ and the sphere $\rho = 4$
 - (d) a spherical cap of radius R and height H
 - (e) the solid obtained from a sphere centered at the origin with radius 2 after a cylindrical hole of radius 1 is drilled through the center of the sphere perpendicular to its base
 - (f) the solid bounded by the cylinder $x^2 + y^2 = 1$, the xy-plane, and the plane z = x + y
- **2.** Let \mathcal{D}_1 be the disk in the *xy*-plane centered at the origin with radius 2. Let \mathcal{D}_2 be the disk in the *xy*-plane centered at (2,0) with radius 2. Suppose g(x,y) is continuous for all x and y. Write an iterated integral in polar coordinates for $\iint_{\mathcal{R}} g(x,y) \, dA$, where \mathcal{R} is...
 - (a) ... the region outside \mathcal{D}_1 and inside \mathcal{D}_2 .
 - (b) ...the region inside both \mathcal{D}_1 and \mathcal{D}_2 .
- **3.** Calculate $\int_0^5 \int_0^y x \, dx \, dy$ by changing to polar coordinates.
- **4.** Calculate $\int_0^3 \int_{-\sqrt{9-y^2}}^{\sqrt{9-y^2}} \int_0^{9-3\sqrt{x^2+y^2}} dz dx dy$ by changing to cylindrical coordinates.
- 5. Let \mathcal{W} be the solid region bounded above by the plane z = 5 and bounded below by the cone $z^2 = x^2 + y^2$. Use spherical coordinates to calculate $\iiint_{\mathcal{W}} \sqrt{x^2 + y^2 + z^2} \, dV$.
- 6. Let \mathcal{W} be the region within the cylinder $x^2 + y^2 = 2$ between the *xy*-plane and the cone $z = \sqrt{x^2 + y^2}$. Calculate the integral of $f(x, y) = x^2 + y^2$ over \mathcal{W} using...
 - (a) ...rectangular coordinates.
 - (b) ...cylindrical coordinates.
 - (c) ...spherical coordinates.

Which of these do you think is easiest?