Difficulty guide for worksheet:

C-level or B-level exam problem:
1a, 1b, 1c, 1e, 2a, 3, 4, 5
A-level exam problem or challenge for extra study:
1d, 1f, 2b, 6 beyond the scope and/or removed from syllabus: none

1. Find the volume of each region or type of solid.
(a) the region bounded by the paraboloid $z=x^{2}+y^{2}$ and the cone $z=2-\sqrt{x^{2}+y^{2}}$
(b) the region below the surface $z=x y+10$ and above the annular region $\mathcal{R}=\left\{(x, y): 4 \leq x^{2}+y^{2} \leq 16\right\}$
(c) the region inside both the cone $\varphi=\frac{\pi}{6}$ and the sphere $\rho=4$
(d) a spherical cap of radius R and height H
(e) the solid obtained from a sphere centered at the origin with radius 2 after a cylindrical hole of radius 1 is drilled through the center of the sphere perpendicular to its base
(f) the solid bounded by the cylinder $x^{2}+y^{2}=1$, the $x y$-plane, and the plane $z=x+y$
2. Let \mathcal{D}_{1} be the disk in the $x y$-plane centered at the origin with radius 2 . Let \mathcal{D}_{2} be the disk in the $x y$-plane centered at $(2,0)$ with radius 2 . Suppose $g(x, y)$ is continuous for all x and y. Write an iterated integral in polar coordinates for $\iint_{\mathcal{R}} g(x, y) d A$, where \mathcal{R} is...
(a) ...the region outside \mathcal{D}_{1} and inside \mathcal{D}_{2}.
(b) ...the region inside both \mathcal{D}_{1} and \mathcal{D}_{2}.
3. Calculate $\int_{0}^{5} \int_{0}^{y} x d x d y$ by changing to polar coordinates.
4. Calculate $\int_{0}^{3} \int_{-\sqrt{9-y^{2}}}^{\sqrt{9-y^{2}}} \int_{0}^{9-3 \sqrt{x^{2}+y^{2}}} d z d x d y$ by changing to cylindrical coordinates.
5. Let \mathcal{W} be the solid region bounded above by the plane $z=5$ and bounded below by the cone $z^{2}=x^{2}+y^{2}$. Use spherical coordinates to calculate $\iiint_{\mathcal{W}} \sqrt{x^{2}+y^{2}+z^{2}} d V$.
6. Let \mathcal{W} be the region within the cylinder $x^{2}+y^{2}=2$ between the $x y$-plane and the cone $z=\sqrt{x^{2}+y^{2}}$. Calculate the integral of $f(x, y)=x^{2}+y^{2}$ over \mathcal{W} using...
(a) ...rectangular coordinates.
(b) ...cylindrical coordinates.
(c) ...spherical coordinates.

Which of these do you think is easiest?

