Difficulty guide for worksheet:

C-level or B-level exam problem: 1, 2

A-level exam problem or challenge for extra study: 3 beyond the scope and/or removed from syllabus: none

1. For each part, describe, in English, the set of points satisfied by the given equation in the indicated coordinate system. You should give a complete, concise, and clear English description; a graph and/or equation in rectangular coordinates is helpful but not sufficient.
(a) $\rho=4 y$ (spherical)
(d) $r=2 \sec (\theta)$ (polar)
(b) $\varphi=\frac{\pi}{4}$ (spherical)
(e) $z=r^{2}$ (cylindrical)
(c) $r=5$ (cylindrical)
(f) $r^{2}+z^{2}=16$ (cylindrical)
2. For each part, describe the given set of points with an equation of the form $z=f(r, \theta)$ for cylindrical coordinates or $\rho=f(\theta, \varphi)$ for spherical coordinates.
(a) the surface $z=3 x y$ (cylindrical)
(b) the sphere centered at the origin with radius 3 (spherical)
(c) the sphere centered at the origin with radius 3 (cylindrical)
(d) the cylinder $y^{2}+z^{2}=4$ (cylindrical)
(e) the upper part of the cone $x^{2}+y^{2}=z^{2}$ (cylindrical)
(f) the plane $z=5$ (spherical)
3. Find equations $r=f(\theta, z)$ (cylindrical) and $\rho=f(\theta, \varphi)$ (spherical) for the hyperboloid $x^{2}+y^{2}=$ $z^{2}+1$. Do there exist points on the hyperboloid with $\varphi=0$ or $\varphi=\pi$? Which values of φ occur for points on the hyperboloid? (A graph of the hyperboloid may help explain what is happening.)
