Difficulty guide for worksheet:

> | C-level or B-level exam problem: | $1 \mathrm{a}, 1 \mathrm{~b}, 1 \mathrm{c}, 1 \mathrm{~d}, 1 \mathrm{f}, 1 \mathrm{~h}, 1 \mathrm{j}, 2 \mathrm{~b}, 3 \mathrm{a}$ |
| ---: | :--- |
| A-level exam problem or challenge for extra study: | $1 \mathrm{e}, 1 \mathrm{~g}, 1 \mathrm{i}, 2 \mathrm{a}$ |
| beyond the scope and/or removed from syllabus: | $1 \mathrm{k}, 1 \mathrm{l}, 3 \mathrm{~b}$ |

1. Calculate $\int_{\mathcal{D}} y d A$, where \mathcal{D} is the domain

$$
\mathcal{D}=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq 1, x^{2} \leq y \leq 4-x^{2}\right\}
$$

2. Let \mathcal{T} be the triangle in the $x y$-plane with vertices $(3,0),(0,6)$, and $(3,6)$. Calculate $\int_{\mathcal{T}} x y d A$.
3. Let \mathcal{T} be the trapezoid in the $x y$-plane with vertices $(0,0),(4,0),(4,2)$, and $(2,2)$. Suppose $f(x, y)$ is continuous on \mathcal{T}. Write $\int_{\mathcal{T}} f(x, y) d A$ as an iterated integral, or sum of iterated integrals, in each possible order ($d y d x$ and $d x d y$).
4. Let \mathcal{R} be the region in the $x y$-plane bounded by $x^{2}+y^{2}=4$ and $x=1$. Calculate $\int_{\mathcal{R}} \frac{y}{x} d A$.
5. For each integral, sketch the domain of integration and express as an iterated integral in the opposite order. For parts (c) and (d), also evaluate the integral.
(a) $\int_{0}^{8} \int_{x}^{8} f(x, y) d y d x$
(c) $\int_{0}^{1} \int_{y}^{1} \frac{\sin (x)}{x} d x d y$
(b) $\int_{0}^{1} \int_{e^{x}}^{e} f(x, y) d y d x$
(d) $\int_{0}^{4} \int_{\sqrt{y}}^{2} \sqrt{x^{3}+1} d x d y$
6. Let \mathcal{R} be the region in the $x y$-plane bounded by $y=e^{x}$ and $y=e^{\sqrt{x}}$. Calculate the volume of the solid region below the graph of $z=\frac{1}{\ln (y)}$ and above \mathcal{R}.
