Difficulty guide for worksheet:	
C-level or B-level exam problem:	1a, 1b, 1c, 1d, 1f, 1h, 1j, 2b, 3a
A-level exam problem or challenge for extra study:	1e, 1g, 1i, 2a
beyond the scope and/or removed from syllabus:	1k, 1l, 3b

1. Calculate $\int_{\mathcal{D}} y \, dA$, where \mathcal{D} is the domain

$$\mathcal{D} = \left\{ (x, y) \in \mathbb{R}^2 : 0 \le x \le 1, \ x^2 \le y \le 4 - x^2 \right\}$$

- **2.** Let \mathcal{T} be the triangle in the *xy*-plane with vertices (3,0), (0,6), and (3,6). Calculate $\int_{\mathcal{T}} xy \, dA$.
- **3.** Let \mathcal{T} be the trapezoid in the *xy*-plane with vertices (0,0), (4,0), (4,2), and (2,2). Suppose f(x,y) is continuous on \mathcal{T} . Write $\int_{\mathcal{T}} f(x,y) dA$ as an iterated integral, or sum of iterated integrals, in each possible order (dydx and dxdy).

4. Let \mathcal{R} be the region in the *xy*-plane bounded by $x^2 + y^2 = 4$ and x = 1. Calculate $\int_{\mathcal{R}} \frac{y}{x} dA$.

5. For each integral, sketch the domain of integration and express as an iterated integral in the opposite order. For parts (c) and (d), also evaluate the integral.

(a)
$$\int_{0}^{8} \int_{x}^{8} f(x,y) \, dy \, dx$$

(b) $\int_{0}^{1} \int_{e^{x}}^{e} f(x,y) \, dy \, dx$
(c) $\int_{0}^{1} \int_{y}^{1} \frac{\sin(x)}{x} \, dx \, dy$
(d) $\int_{0}^{4} \int_{\sqrt{y}}^{2} \sqrt{x^{3} + 1} \, dx \, dy$

6. Let \mathcal{R} be the region in the *xy*-plane bounded by $y = e^x$ and $y = e^{\sqrt{x}}$. Calculate the volume of the solid region below the graph of $z = \frac{1}{\ln(y)}$ and above \mathcal{R} .