Difficulty guide for worksheet:	
C-level or B-level exam problem:	1, 3, 4, 5
A-level exam problem or challenge for extra study:	2, 6
beyond the scope and/or removed from syllabus:	none

- 1. For each function, find all critical points and classify each of them as a local minimum, local maximum, or neither (saddle).
 - (a) $f(x,y) = 3x^2 4y^2$ (b) $f(x,y) = x^3 + 6xy - 6x + y^2 - 2y$ (c) $f(x,y) = ye^x - e^y$ (d) $f(x,y) = x^3y + 12x^2 - 8y$

2. Let $f(x, y) = y^2 x - y x^2 + x y$.

(a) Show that the critical points (x, y) satisfy the equations

$$y(y - 2x + 1) = 0$$

 $x(2y - x + 1) = 0$

(b) Show that f has four critical points.

Hint: For three of these points, at least one of x and y is 0. For the fourth point, both x and y are nonzero.

(c) Classify each critical point as either a local minimum, local maximum, or neither (saddle).

3. Let $f(x, y) = x^2 + y^2 - 2y + 1$ and let *S* be the square $\{(x, y) : -1 \le x \le 1, -1 \le y \le 1\}$.

- (a) Find the critical point(s) of f and find the associated critical value(s). Then classify each critical point as a local minimum, local maximum, or neither (saddle).
- (b) Find the minimum and maximum values of f on each of the four edges of S. Then determine the global extreme values of f on S. Fill in the table below as you work.

edge of ${\cal S}$	bottom edge	right edge	top edge	left edge
minimum value of f				
maximum value of f				

- 4. Let $f(x, y) = x^2 + y^2 2x 2y$ and let \mathcal{T} be the closed region bounded by the triangle with vertices (0, 0), (2, 0), (0, 2).
 - (a) Find the critical point(s) of f and find the associated critical value(s). Then classify each critical point as a local minimum, local maximum, or neither (saddle).
 - (b) Find the minimum and maximum values of f on each of the three edges of \mathcal{T} . Then determine the global extreme values of f on \mathcal{T} . Fill in the table below as you work.

edge of ${\cal T}$	bottom edge	left edge	slant edge
minimum value of f			
maximum value of f			

5. Let $f(x,y) = 2x^2 + y^2$ and let \mathcal{D} be the closed disk $\{(x,y) : x^2 + y^2 \le 4\}$.

- (a) Find the critical point(s) of f and find the associated critical value(s). Then classify each critical point as a local minimum, local maximum, or neither (saddle).
- (b) Find the minimum and maximum values of f on the boundary of \mathcal{D} . Then determine the global extreme values of f on \mathcal{D} .

6. Let $f(x,y) = \frac{2y^2 - x^2}{2 + 2x^2y}$ and let \mathcal{R} be the closed region bounded by the lines y = x, y = 2x, and y = 2.

- (a) Find the critical point(s) of f and find the associated critical value(s). Then classify each critical point as a local minimum, local maximum, or neither (saddle).
- (b) Find the minimum and maximum values of f on each of the three edges of \mathcal{R} . Then determine the global extreme values of f on \mathcal{R} . Fill in the table below as you work.

edge of ${\cal R}$	left edge	right edge	top edge
minimum value of f			
maximum value of f			