Difficulty guide for worksheet:

C-level or B-level exam problem: 1, 3, 4, 5
A-level exam problem or challenge for extra study: 2, 6 beyond the scope and/or removed from syllabus: none

1. For each function, find all critical points and classify each of them as a local minimum, local maximum, or neither (saddle).
(a) $f(x, y)=3 x^{2}-4 y^{2}$
(c) $f(x, y)=y e^{x}-e^{y}$
(b) $f(x, y)=x^{3}+6 x y-6 x+y^{2}-2 y$
(d) $f(x, y)=x^{3} y+12 x^{2}-8 y$
2. Let $f(x, y)=y^{2} x-y x^{2}+x y$.
(a) Show that the critical points (x, y) satisfy the equations

$$
\begin{aligned}
& y(y-2 x+1)=0 \\
& x(2 y-x+1)=0
\end{aligned}
$$

(b) Show that f has four critical points.

Hint: For three of these points, at least one of x and y is 0 . For the fourth point, both x and y are nonzero.
(c) Classify each critical point as either a local minimum, local maximum, or neither (saddle).
3. Let $f(x, y)=x^{2}+y^{2}-2 y+1$ and let \mathcal{S} be the square $\{(x, y):-1 \leq x \leq 1,-1 \leq y \leq 1\}$.
(a) Find the critical point(s) of f and find the associated critical value(s). Then classify each critical point as a local minimum, local maximum, or neither (saddle).
(b) Find the minimum and maximum values of f on each of the four edges of \mathcal{S}. Then determine the global extreme values of f on \mathcal{S}. Fill in the table below as you work.

edge of \mathcal{S}	bottom edge	right edge	top edge	left edge
minimum value of f				
maximum value of f				

4. Let $f(x, y)=x^{2}+y^{2}-2 x-2 y$ and let \mathcal{T} be the closed region bounded by the triangle with vertices $(0,0),(2,0)$, and (0,2).
(a) Find the critical point(s) of f and find the associated critical value(s). Then classify each critical point as a local minimum, local maximum, or neither (saddle).
(b) Find the minimum and maximum values of f on each of the three edges of \mathcal{T}. Then determine the global extreme values of f on \mathcal{T}. Fill in the table below as you work.

edge of \mathcal{T}	bottom edge	left edge	slant edge
minimum value of f			
maximum value of f			

5. Let $f(x, y)=2 x^{2}+y^{2}$ and let \mathcal{D} be the closed disk $\left\{(x, y): x^{2}+y^{2} \leq 4\right\}$.
(a) Find the critical point(s) of f and find the associated critical value(s). Then classify each critical point as a local minimum, local maximum, or neither (saddle).
(b) Find the minimum and maximum values of f on the boundary of \mathcal{D}. Then determine the global extreme values of f on \mathcal{D}.
6. Let $f(x, y)=\frac{2 y^{2}-x^{2}}{2+2 x^{2} y}$ and let \mathcal{R} be the closed region bounded by the lines $y=x, y=2 x$, and $y=2$.
(a) Find the critical point(s) of f and find the associated critical value(s). Then classify each critical point as a local minimum, local maximum, or neither (saddle).
(b) Find the minimum and maximum values of f on each of the three edges of \mathcal{R}. Then determine the global extreme values of f on \mathcal{R}. Fill in the table below as you work.

edge of \mathcal{R}	left edge	right edge	top edge
minimum value of f			
maximum value of f			

