Difficulty guide for worksheet:		
C-level or B-level exam problem:	3, 4, 5, 6	
A-level exam problem or challenge for extra study:	1	
beyond the scope and/or removed from syllabus:	2	

1. Let r, s, and t be independent parameters and suppose x, y, and z are given by

$$x = 4r - s - 6t$$
$$y = -r + 2s + 5t$$
$$z = 7r + 3s - t$$

Let w = f(x, y, z) where f is an arbitrary differentiable function. Calculate the sum

$$A(r,s,t) = \frac{\partial w}{\partial r} - 2\frac{\partial w}{\partial s} + \frac{\partial w}{\partial t}$$

Write your answer as a function of r, s, and t. Simplify as much as possible. Since f is arbitrary, your answer may still contain the symbol f or related symbols. But you must write your answer as a function of r, s, and t.

- **2.** Let z = f(x, y), where f is an arbitrary differentiable function. Suppose $x = r \cos(\theta)$ and $y = r \sin(\theta)$. Calculate both z_r and z_{θ} . Express your answer in terms of r and θ only. This exercise shows how the derivatives in polar coordinates are related to the derivatives in rectangular coordinates.
- 3. Use the multivariable chain rule to calculate the specified partial derivatives.

(a)
$$z_s$$
 and z_t , where $z = x^2 \sin(y)$, $x = s - t$, and $y = t^2$
 $x - z$

(b) w_s and w_t , where $w = \frac{x-z}{y+z}$, x = s+t, y = st, and z = s-t

(c)
$$\frac{dU}{dt}$$
, where $U = \frac{xy^2}{z^8}$, $x = e^t$, $y = \sin(3t)$, and $z = 4t + 1$

4. Suppose x and y are implicitly related by the equation F(x, y) = 0. Use the multivariable chain rule to show

$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

Then use this result to find y'(x) if $x^2 = xy^2 + \sin(y) + 3$.

5. Suppose x, y, and z are implicitly related by the equation F(x, y, z) = 0. Use the multivariable chain rule to show

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} \quad , \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

Then use this result to find z_x and z_y if $x^2yz^2 = 10 - 3xz^3$.

6. For each implicit equation, calculate the specified partial derivative.

(a)
$$z_x$$
 if $\sqrt{x^2 + 2xz + z^4} = 3$
(b) y_z if $y \ln(x^2 + y^2 + 4z) = 1$