Difficulty guide for worksheet:

C-level or B-level exam problem: 3, 4, 5, 6
A-level exam problem or challenge for extra study: 1 beyond the scope and/or removed from syllabus: 2

1. Let r, s, and t be independent parameters and suppose x, y, and z are given by

$$
\begin{aligned}
& x=4 r-s-6 t \\
& y=-r+2 s+5 t \\
& z=7 r+3 s-t
\end{aligned}
$$

Let $w=f(x, y, z)$ where f is an arbitrary differentiable function. Calculate the sum

$$
A(r, s, t)=\frac{\partial w}{\partial r}-2 \frac{\partial w}{\partial s}+\frac{\partial w}{\partial t}
$$

Write your answer as a function of r, s, and t. Simplify as much as possible.
Since f is arbitrary, your answer may still contain the symbol f or related symbols. But you must write your answer as a function of r, s, and t.
2. Let $z=f(x, y)$, where f is an arbitrary differentiable function. Suppose $x=r \cos (\theta)$ and $y=$ $r \sin (\theta)$. Calculate both z_{r} and z_{θ}. Express your answer in terms of r and θ only.
This exercise shows how the derivatives in polar coordinates are related to the derivatives in rectangular coordinates.
3. Use the multivariable chain rule to calculate the specified partial derivatives.
(a) z_{s} and z_{t}, where $z=x^{2} \sin (y), x=s-t$, and $y=t^{2}$
(b) w_{s} and w_{t}, where $w=\frac{x-z}{y+z}, x=s+t, y=s t$, and $z=s-t$
(c) $\frac{d U}{d t}$, where $U=\frac{x y^{2}}{z^{8}}, x=e^{t}, y=\sin (3 t)$, and $z=4 t+1$
4. Suppose x and y are implicitly related by the equation $F(x, y)=0$. Use the multivariable chain rule to show

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}
$$

Then use this result to find $y^{\prime}(x)$ if $x^{2}=x y^{2}+\sin (y)+3$.
5. Suppose x, y, and z are implicitly related by the equation $F(x, y, z)=0$. Use the multivariable chain rule to show

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}} \quad, \quad \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}
$$

Then use this result to find z_{x} and z_{y} if $x^{2} y z^{2}=10-3 x z^{3}$.
6. For each implicit equation, calculate the specified partial derivative.
(a) z_{x} if $\sqrt{x^{2}+2 x z+z^{4}}=3$
(b) y_{z} if $y \ln \left(x^{2}+y^{2}+4 z\right)=1$

