Difficulty guide for worksheet:

C-level or B-level exam problem: 1a, 1b, 1c, 1d, 1f, 2, 3a, 3b, 3c
A-level exam problem or challenge for extra study: $1 \mathrm{e}, 1 \mathrm{~g}, 1 \mathrm{~h}, 3 \mathrm{~d}, 3 \mathrm{e}, 3 \mathrm{f}$ beyond the scope and/or removed from syllabus: 4

1. For each function f, describe the contour curves or contour surfaces, as appropriate. You should give a complete, concise, and clear English description in addition to a sketch of a contour map with an appropriate contour interval.
(a) $f(x, y)=3 x^{2}-y^{2}$
(e) $f(x, y)=\sin \left(x^{2}+y^{2}\right)$
(b) $f(x, y)=\frac{y}{x^{2}}$
(f) $f(x, y, z)=2 x-3 y+4 z-5$
(c) $f(x, y)=x^{4}$
(g) $f(x, y, z)=x^{2}+y^{2}-z$
(d) $f(x, y)=e^{x^{2}+4 y^{2}}$
(h) $f(x, y, z)=x^{2}-y^{2}+z^{2}$
2. Sketch a graph of the function $f(x, y)=\sqrt{9-x^{2}-y^{2}}$.
3. Evaluate the limit or determine it does not exist. You must justify your answer.
(a) $\lim _{(x, y) \rightarrow(1,1)}\left(\frac{e^{x}-e^{-y}}{x+y}\right)$
(d) $\lim _{(x, y) \rightarrow(0,0)}\left(\frac{x^{3}+y^{3}}{x y^{2}}\right)$
(b) $\lim _{(x, y) \rightarrow(1,0)} \ln \left(x^{2}-y\right)$
(e) $\lim _{(x, y) \rightarrow(0,0)}\left(\frac{x^{3}}{x^{2}+y^{2}}\right)$
(c) $\lim _{(x, y) \rightarrow(0,0)}\left(\frac{x y}{x^{2}+y^{2}}\right)$
(f) $\lim _{(x, y) \rightarrow(0,0)}\left(\tan (x) \sin \left(\frac{1}{|x|+|y|}\right)\right)$
4. Suppose two distinct contour curves of the function $f(x, y)$ are tangent to each other at the point $P=(a, b)$. What can you say about $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$? Explain your answer.

Solutions:
(1) (a) hyperbolas with focus and directrix on coordinate axes
(b) parabolas through the origin with origin removed
(c) vertical lines in right half-plane
(d) ellipses centered at origin
(e) concentric circles centered at origin.
(f) planes
(g) paraboloids opening along z-axis
(h) cones opening along x-axis
(2) upper hemisphere of sphere centered at origin with radius 3 .
(3) (a) $\frac{e-e^{-1}}{2}=\sinh (1)$
(b) 0
(c) DNE
(d) DNE
(e) 0
(f) 0
(4) $\lim _{(x, y) \rightarrow(a, b)} f(x, y) \quad D N E$

