Difficulty guide for worksheet:

C-level or B-level exam problem: 1, 2, 4, 6

A-level exam problem or challenge for extra study: 5 beyond the scope and/or removed from syllabus: 3

1. Which of the following does not parametrize a line or some portion of a line? Explain your answer.
(a) $\boldsymbol{r}(t)=\langle 2+3 t, 9-t, 12+7 t\rangle$
(c) $\boldsymbol{r}(t)=\langle 2 \cos (2 t), 5+3 \cos (2 t), \sin (2 t)\rangle$
(b) $\boldsymbol{r}(t)=\left\langle 1-t^{2}, 3+3 t^{2}, t^{3}\right\rangle$
(d) $\boldsymbol{r}(t)=\left\langle t^{3}, 4-8 t^{3}, 8+3 t^{3}\right\rangle$
2. Find a parametrization of each described curve.
(a) A circle of radius 3 with center $(-2,3,1)$, lying in a plane parallel to the $x z$-plane.
(b) The ellipse $4 y^{2}+9 z^{2}=36$ translated to have center $(-1,10,-5)$.
(c) The intersection of the surfaces $y^{2}-z^{2}=x-2$ and $y^{2}+z^{2}=9$.
(d) The intersection of the sphere $x^{2}+y^{2}+z^{2}=1$ and the paraboloid $z=x^{2}+y^{2}$.
3. We will show that the curve with the following parametrization lies in a plane.

$$
\boldsymbol{r}(t)=\left\langle t^{2}-1, t-2 t^{2}, 4-6 t\right\rangle
$$

(a) Show that the points on the curve at $t=0, t=1$, and $t=2$ do not lie on a line. Then find an equation of the plane that they determine.
(b) Show that for all t, the points on \mathcal{C} satisfy the equation of the plane from part (a).
4. Find a parametrization of the line tangent to the curve at the indicated value of t.
(a) $\boldsymbol{r}(t)=\left\langle 1-t^{2}, 5 t, 2 t^{3}\right\rangle$ at $t=2$
(b) $\boldsymbol{r}(t)=4 t^{-1} \boldsymbol{i}-6 t^{-3} \boldsymbol{k}$ at $t=1$
5. For $0 \leq t \leq 4 \pi$, the path of a particle is parametrized by

$$
\boldsymbol{r}(t)=\left\langle\cos (t) \sin (t), \sin (t)^{2}, \sin (t)\right\rangle
$$

(a) Show that the path of the particle is a closed loop.
(b) Let \mathcal{C} be the curve on which the particle travels. How many times does the particle traverse \mathcal{C} from $t=0$ to $t=4 \pi$? Justify your answer.
(c) Find an integral whose value is the length of \mathcal{C}.
(d) Find an integral whose value is the distance traveled by the particle.
6. Calculate the length of the described curve.
(a) $\boldsymbol{r}(t)=\left\langle 4 t, \sqrt{3} t^{3 / 2}, t^{3 / 2}\right\rangle, 0 \leq t \leq 1$
(b) $\boldsymbol{r}(t)=\left\langle 2 t, \ln (t), t^{2}\right\rangle, 1 \leq t \leq 4$

