Difficulty guide for worksheet:

C-level or B-level exam problem: 1, 2, 3, 4, 5, 6, 7, 8
A-level exam problem or challenge for extra study: none beyond the scope and/or removed from syllabus:
none

1. For each pair of vectors, calculate both the dot product $\boldsymbol{u} \cdot \boldsymbol{v}$ and the cross product $\boldsymbol{u} \times \boldsymbol{v}$.
(a) $\boldsymbol{u}=\langle 1,2,1\rangle$ and $\boldsymbol{v}=\langle-3,2,4\rangle$
(b) $\boldsymbol{u}=\boldsymbol{j}$ and $\boldsymbol{v}=\boldsymbol{k}$
(c) $\boldsymbol{u}=2 \boldsymbol{i}-3 \boldsymbol{j}+\boldsymbol{k}$ and $\boldsymbol{v}=-\boldsymbol{i}+\boldsymbol{j}$
2. Find the sine and cosine of the angle between each pair of vectors. Then determine whether the angle between the two vectors is acute, right, or obtuse.
(a) $\boldsymbol{i}-2 \boldsymbol{j}+5 \boldsymbol{k}$ and $\boldsymbol{i}+2 \boldsymbol{j}-\boldsymbol{k}$
(b) $\langle 2,3,-1\rangle$ and $\langle-4,-6,2\rangle$
(c) $\boldsymbol{i}+\boldsymbol{k}$ and $\boldsymbol{i}-\boldsymbol{j}$
3. Suppose \boldsymbol{u} and \boldsymbol{v} are orthogonal with $\|\boldsymbol{u}\|=2$ and $\|\boldsymbol{v}\|=5$. Calculate $\|\boldsymbol{u}+\boldsymbol{v}\|$.
4. Suppose the angle between the unit vectors \boldsymbol{u} and \boldsymbol{v} is 120 degrees. Calculate the following.
(a) $\boldsymbol{u} \cdot \boldsymbol{v}$
(b) $\|\boldsymbol{u}-2 \boldsymbol{v}\|$
5. For each pair of vectors, find the projection of \boldsymbol{v} along \boldsymbol{u}.
(a) $\boldsymbol{v}=\langle 3,-2,1\rangle$ along $\boldsymbol{u}=\boldsymbol{j}$
(b) $\boldsymbol{v}=2 \boldsymbol{i}-\boldsymbol{j}+6 \boldsymbol{k}$ along $\boldsymbol{u}=\boldsymbol{i}+\boldsymbol{k}$
(c) $\boldsymbol{v}=5 \boldsymbol{i}+5 \boldsymbol{j}-2 \boldsymbol{k}$ along $\boldsymbol{u}=\langle 1,1,-1\rangle$
6. Let $\boldsymbol{u}=\lambda \boldsymbol{i}-2 \lambda \boldsymbol{j}+\mu \boldsymbol{k}$ and $\boldsymbol{v}=5 \boldsymbol{i}-\mu \boldsymbol{j}+\lambda \boldsymbol{k}$, where λ and μ are unknown constants.
(a) Find all pairs (λ, μ) such that \boldsymbol{u} and \boldsymbol{v} are orthogonal, or determine that no such pair exists.
(b) Find all pairs (λ, μ) such that \boldsymbol{u} and \boldsymbol{v} are parallel, or determine that no such pair exists.
7. Find the area of the triangle spanned by the vectors $\boldsymbol{u}=2 \boldsymbol{i}-\boldsymbol{j}$ and $\boldsymbol{v}=\boldsymbol{i}+4 \boldsymbol{j}$.
8. Calculate the following determinants. Fully simplify your answer.

$$
\left|\begin{array}{rrr}
1 & -1 & 0 \\
0 & 2 & -3 \\
4 & -2 & 1
\end{array}\right|,\left|\begin{array}{lll}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right|,\left|\begin{array}{ccc}
\sin (\theta) \cos (\varphi) & \rho \cos (\theta) \cos (\varphi) & -\rho \sin (\theta) \sin (\varphi) \\
\sin (\theta) \sin (\varphi) & \rho \cos (\theta) \sin (\varphi) & \rho \sin (\theta) \cos (\varphi) \\
\cos (\theta) & -\rho \sin (\theta) & 0
\end{array}\right|
$$

