Difficulty guide for worksheet:	
C-level or B-level exam problem:	1, 2, 3, 4, 5, 6, 7, 8
A-level exam problem or challenge for extra study:	none
beyond the scope and/or removed from syllabus:	none

- **1.** For each pair of vectors, calculate both the dot product $\boldsymbol{u} \cdot \boldsymbol{v}$ and the cross product $\boldsymbol{u} \times \boldsymbol{v}$.
 - (a) *u* = (1, 2, 1) and *v* = (-3, 2, 4)
 (b) *u* = *j* and *v* = *k*(c) *u* = 2*i* 3*j* + *k* and *v* = −*i* + *j*
- 2. Find the sine and cosine of the angle between each pair of vectors. Then determine whether the angle between the two vectors is acute, right, or obtuse.
 - (a) $\boldsymbol{i} 2\boldsymbol{j} + 5\boldsymbol{k}$ and $\boldsymbol{i} + 2\boldsymbol{j} \boldsymbol{k}$
 - (b) (2, 3, -1) and (-4, -6, 2)
 - (c) i + k and i j
- **3.** Suppose \boldsymbol{u} and \boldsymbol{v} are orthogonal with $\|\boldsymbol{u}\| = 2$ and $\|\boldsymbol{v}\| = 5$. Calculate $\|\boldsymbol{u} + \boldsymbol{v}\|$.
- 4. Suppose the angle between the unit vectors \boldsymbol{u} and \boldsymbol{v} is 120 degrees. Calculate the following.
 - (a) $\boldsymbol{u} \cdot \boldsymbol{v}$ (b) $\|\boldsymbol{u} 2\boldsymbol{v}\|$
- 5. For each pair of vectors, find the projection of v along u.
 - (a) $\boldsymbol{v} = \langle 3, -2, 1 \rangle$ along $\boldsymbol{u} = \boldsymbol{j}$
 - (b) $\boldsymbol{v} = 2\boldsymbol{i} \boldsymbol{j} + 6\boldsymbol{k}$ along $\boldsymbol{u} = \boldsymbol{i} + \boldsymbol{k}$
 - (c) $\boldsymbol{v} = 5\boldsymbol{i} + 5\boldsymbol{j} 2\boldsymbol{k}$ along $\boldsymbol{u} = \langle 1, 1, -1 \rangle$

6. Let $\boldsymbol{u} = \lambda \boldsymbol{i} - 2\lambda \boldsymbol{j} + \mu \boldsymbol{k}$ and $\boldsymbol{v} = 5\boldsymbol{i} - \mu \boldsymbol{j} + \lambda \boldsymbol{k}$, where λ and μ are unknown constants.

- (a) Find all pairs (λ, μ) such that \boldsymbol{u} and \boldsymbol{v} are orthogonal, or determine that no such pair exists.
- (b) Find all pairs (λ, μ) such that \boldsymbol{u} and \boldsymbol{v} are parallel, or determine that no such pair exists.
- 7. Find the area of the triangle spanned by the vectors $\boldsymbol{u} = 2\boldsymbol{i} \boldsymbol{j}$ and $\boldsymbol{v} = \boldsymbol{i} + 4\boldsymbol{j}$.
- 8. Calculate the following determinants. Fully simplify your answer.

$$\begin{vmatrix} 1 & -1 & 0 \\ 0 & 2 & -3 \\ 4 & -2 & 1 \end{vmatrix} , \begin{vmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{vmatrix} , \begin{vmatrix} \sin(\theta)\cos(\varphi) & \rho\cos(\theta)\cos(\varphi) & -\rho\sin(\theta)\sin(\varphi) \\ \sin(\theta)\sin(\varphi) & \rho\cos(\theta)\sin(\varphi) & \rho\sin(\theta)\cos(\varphi) \\ \cos(\theta) & -\rho\sin(\theta) & 0 \end{vmatrix}$$